Основные понятия электростатики и развитие учения об электростатике. Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. К

Определение 1

Электростатика – обширный раздел электродинамики, исследующий и описывающий покоящиеся в определенной системе электрически заряженные тела.

На практике выделяют два вида электростатических зарядов: положительные (стекло о шелк) и отрицательные (эбонит о шерсть). Элементарный заряд является минимальным зарядом ($e = 1,6 ∙10^{ -19}$ Кл). Заряд любого физического тела кратен целому количеству элементарных зарядов: $q = Ne$.

Электризация материальных тел – перераспределение заряда между телами. Способы электризации: касание, трение и влияние.

Закон сохранения электрического положительного заряда – в замкнутой концепции алгебраическая сумма зарядов всех элементарных частиц остается стабильной и неизменной. $q_1 + q _2 + q _3 + …..+ q_n = const$. Пробный заряд в данном случае представляет собой точечный положительный заряд.

Закон Кулона

Указанный закон был установлен экспериментальным путем в 1785 году. Согласно этой теории, сила взаимодействия двух покоящихся точечных зарядов в среде всегда прямо пропорциональна произведению положительных модулей и обратно пропорционально квадрату общего расстояния между ними.

Электрическое поле представляет собой уникальный вид материи, который осуществляет взаимодействие между стабильными электрическими зарядами, формируется вокруг зарядов, воздействует только на заряды.

Такой процесс точечных неподвижных элементов полностью подчиняются третьему закону Ньютона, и считается результатом отталкивания друг от друга частиц при одинаковых силовых притяжениях друг к другу. Взаимосвязь стабильных электрических зарядов в электростатике называют кулоновским взаимодействием.

Закон Кулона вполне справедлив и точен для заряженных материальных тел, равномерно заряженных шаров и сфер. В этом случае за расстояния в основном берут параметры центров пространств. На практике данный закон хорошо и быстро выполняется, если величины заряженных тел гораздо меньше расстояния между ними.

Замечание 1

В электрическом поле также действуют проводники и диэлектрики.

Первые представляют содержащие свободные носители электромагнитного заряда вещества. Внутри проводника может возникнуть свободное движение электронов. К этим элементам относятся растворы, металлы и различные расплавы электролитов, идеальные газы и плазма.

Диэлектрики являются веществами, в которых не может быть свободных носителей электрического заряда. Свободное движение электронов внутри самих диэлектриков невозможно, так как по ним не протекает электрический ток. Именно эти физические частицы обладают не равной диэлектрической единице проницаемостью.

Силовые линии и электростатика

Силовые линии начальной напряженности электрического поля являются непрерывными линиями, касательные точки к которым в каждой среде, через которые они проходят, полностью совпадают с осью напряженности.

Основные характеристики силовых линий:

  • не пересекаются;
  • не замкнуты;
  • стабильны;
  • конечное направление совпадает с направлением вектора;
  • начало на $+ q$ или в бесконечности, конец на $– q$;
  • формируются вблизи зарядов (где больше напряжённость);
  • перпендикулярны поверхности основного проводника.

Определение 2

Разность электрических потенциалов или напряжение (Ф или $U$) - это величина потенциалов в начальной и конечной точках траектории положительного заряда. Чем меньше изменяется потенциал на отрезке пути, тем меньше в итоге напряженность поля.

Напряженность электрического поля всегда направлена в сторону уменьшения начального потенциала.

Рисунок 2. Потенциальная энергия системы электрических зарядов. Автор24 - интернет-биржа студенческих работ

Электроемкость характеризует способность любого проводника накапливать необходимый электрический заряд на собственной поверхности.

Данный параметр не зависит от электрического заряда, однако на него могут воздействовать геометрические размеры проводников, их формы, расположение и свойств среды между элементами.

Конденсатор является универсальным электротехническим устройством, которое помогает быстро накопить электрический заряд для отдачи его в цепь.

Электрическое поле и его напряженность

По современным представлениям ученых, электрические стабильные заряды не влияют друг на друга непосредственно. Каждое заряженное физическое тело в электростатике создает в окружающей среде электрическое поле. Этот процесс оказывает силовое воздействие на другие заряженные вещества. Главное свойство электрического поля заключается в действии на точечные заряды с некоторой силой. Таким образом, взаимодействие положительно заряженных частиц осуществляется через поля, которые окружают заряженные элементы.

Это явление возможно исследовать посредством, так называемого, пробного заряда – небольшого по размеру электрического заряда, который не вносит существенное перераспределения изучаемого зарядов. Для количественного выявления поля вводится силовая особенность - напряженность электрического поля.

Напряженностью называют физический показатель, который равен отношению силы, с которой поле воздействует на пробный заряд, размещенный в данной точке поля, к величине самого заряда.

Напряженность электрического поля представляет собой векторную физическую величину. Направление вектора в этом случае совпадает в каждой материальной точке окружающего пространства с направлением действующей на положительный заряд силы. Электрическое поле не меняющихся со временем и неподвижных элементов считается электростатическим.

Для понимания электрического поля применяют силовые линии, которые проводятся таким образом, чтобы направление главной оси напряженности в каждой системе совпадало с направлением касательной к точке.

Разность потенциалов в электростатике

Электростатическое поле включает одно важное свойство: работа сил всех движущихся частиц при перемещении точечного заряда из одной точки поля в другую не зависит от направления траектории, а определяется исключительно положением начальной и конечной линий и параметром заряда.

Результатом независимости работы от формы движения зарядов является следующее утверждение: функционал сил электростатического поля при преобразовании заряда по любой замкнутой траектории всегда равен нулю.

Рисунок 4. Потенциальность электростатического поля. Автор24 - интернет-биржа студенческих работ

Свойство потенциальности электростатического поля помогает ввести понятие потенциальной и внутренней энергии заряда. А физический параметр, равный соотношению потенциальной энергии в поле к величине этого заряда, называют постоянным потенциалом электрического поля.

Во многих сложных задачах электростатики при определении потенциалов за опорную материальную точку, где величина потенциальной энергии и самого потенциала обращаются в ноль, удобно использовать бесконечно удаленную точку. В этом случае значимость потенциала определяется так: потенциал электрического поля в любой точке пространства равен работе, которую выполняют внутренние силы при удалении положительного единичного заряда из данной системы в бесконечность.

Электростатика - раздел физики изучающий электростатическое поле и электрические заряды.

Между одноимённо заряженными телами возникает электростатическое (или кулоновское) отталкивание, а между разноимённо заряженными - электростатическое притяжение. Явление отталкивания одноименных зарядов лежит в основе создания электроскопа - прибора для обнаружения электрических зарядов.

В основе электростатики лежит закон Кулона. Этот закон описывает взаимодействие точечных электрических зарядов.

Основание электростатики положили работы Кулона (хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш. Результаты работ Кавендиша хранились в семейном архиве и были опубликованы только спустя сто лет); найденный последним закон электрических взаимодействий дал возможность Грину, Гауссу и Пуассону создать изящную в математическом отношении теорию. Самую существенную часть электростатики составляет теория потенциала, созданная Грином и Гауссом. Очень много опытных исследований по электростатике было произведено Рисом книги которого составляли в прежнее время главное пособие при изучении этих явлений.

Опыты Фарадея, произведенные еще в первую половину тридцатых годов XIX века, должны были повлечь за собой коренное изменение в основных положениях учения об электрических явлениях. Эти опыты указали, что то, что считалось совершенно пассивно относящимся к электричеству, а именно, изолирующие вещества или, как их назвал Фарадей, диэлектрики, имеет определяющее значение во всех электрических процессах и, в частности, в самой электризации проводников. Эти опыты обнаружили, что вещество изолирующего слоя между двумя поверхностями конденсатора играет важную роль в величине электроёмкости этого конденсатора. Замена воздуха, как изолирующего слоя между поверхностями конденсатора, каким-либо другим жидким или твердым изолятором производит на величину электроемкости конденсатора такое же действие, какое оказывает соответствующее уменьшение расстояния между этими поверхностями при сохранении воздуха в качестве изолятора. При замене слоя воздуха слоем другого жидкого или твердого диэлектрика электроемкость конденсатора увеличивается в K раз. Эта величина K названа Фарадеем индуктивной способностью данного диэлектрика. Сегодня величину K называют обыкновенно диэлектрической проницаемось этого изолирующего вещества.

Такое же изменение электрической ёмкости происходит и в каждом отдельном проводящем теле, когда это тело из воздуха переносится в другую изолирующую среду. Но изменение электроемкости тела влечет за собой изменение величины заряда на этом теле при данном потенциале на нём, а также и обратно, изменение потенциала тела при данном заряде его. Вместе с этим оно изменяет и электрическую энергию тела. Итак, значение изолирующей среды, в которой помещены электризуемые тела или которая отделяет собой поверхности конденсатора, является крайне существенным. Изолирующее вещество не только удерживает электрический заряд на поверхности тела, оно влияет на само электрическое состояние последнего. Таково заключение, к какому привели Фарадея его опыты. Это заключение вполне соответствовало основному взгляду Фарадея на электрические действия.

Согласно гипотезе Кулона, электрические действия между телами рассматривались, как действия, которые происходят на расстоянии. Принималось, что два заряда q и q", мысленно сосредоточенные в двух точках, отстоящих друг от друга на расстояние r, отталкивают или притягивают один другого по направлению линии, соединяющей эти две точки, с силой, которая определяется формулой

Причем коэффициент C является зависящим исключительно только от единиц, служащих для измерения величин q, r и f. Природа среды, внутри которой находятся данные две точки с зарядами q и q", предполагалось, не имеет никакого значения, не влияет на величину f. Фарадей держался совершенно иного взгляда на это. По его мнению, наэлектризованное тело только кажущимся образом действует на другое тело, находящееся в некотором расстоянии от него; на самом деле электризуемое тело лишь вызывает особые изменения в соприкасающейся с ним изолирующей среде, которые передаются в этой среде от слоя к слою, достигают, наконец, слоя, непосредственно прилегающего к другому рассматриваемому телу и производят там то, что представляется непосредственным действием первого тела на второе через отделяющую их среду. При таком воззрении на электрические действия закон Кулона, выражающийся вышепривёденной формулой, может служить только для описания того, что даёт наблюдение, и нисколько не выражает истинного процесса, происходящего при этом. Тогда становится понятным, что вообще электрические действия меняются при перемене изолирующей среды, поскольку в этом случае должны изменяться и те деформации, какие возникают в пространстве между двумя, по-видимому, действующими друг на друга наэлектризованными телами. Закон Кулона, так сказать, описывающий внешним образом явление, должен быть заменен другим, в который входит характеристика природы изолирующей среды. Для изотропной и однородной среды закон Кулона, как показали дальнейшие исследования, может быть выражен следующей формулой:

Здесь K обозначает то, что выше названо диэлектрической постоянной данной изолирующей среды. Величина K для воздуха равна единице, т. е. для воздуха взаимодействие между двумя точками с зарядами q и q" выражается так, как принял это Кулон.

Согласно основной идее Фарадея, окружающая изолирующая среда или, лучше, те изменения (поляризация среды), какие под влиянием процесса, приводящего тела в электрическое состояние, являются в наполняющем эту среду эфире, представляют собою причину всех наблюдаемых нами электрических действий. По Фарадею самая электризация проводников на их поверхности - лишь следствие влияния на них поляризованной окружающей среды. Изолирующая среда при этом находится в напряженном состоянии. На основании весьма простых опытов Фарадей пришел к заключению, что при возбуждении электрической поляризации в какой-либо среде, при возбуждении, как говорят теперь, электрического поля, в этой среде должно существовать натяжение вдоль силовых линий (силовая линия - это линия, касательные к которой совпадают с направлениями электрических сил, испытываемых положительным электричеством, воображенным в точках, находящихся на этой линии) и должно существовать давление по направлениям, перпендикулярным к силовым линиям. Такое напряженное состояние может вызываться только в изоляторах. Проводники не способны испытывать подобное изменение своего состояния, в них не происходит никакого возмущения; и только на поверхности таких проводящих тел, т. е. на границе между проводником и изолятором, поляризованное состояние изолирующей среды становится заметным, оно выражается в кажущемся распределении электричества на поверхности проводников. Итак, наэлектризованный проводник как бы связан с окружающей изолирующей средой. С поверхности этого наэлектризованного проводника как бы распространяются силовые линии, и эти линии заканчиваются на поверхности другого проводника, который видимым образом представляется покрытым противоположным по знаку электричеством. Вот какова картина, которую рисовал себе Фарадей для разъяснения явлений электризации.

Учение Фарадея не скоро было принято физиками. Опыты Фарадея рассматривались даже в шестидесятых годах, как не дающие права на допущением какого-либо существенного значения изоляторов в процессах электризации проводников. Только позднее, после появления замечательных работ Максвелла, идеи Фарадея стали все более и более распространяться между учеными и, наконец,были признаны вполне отвечающими фактам.

Здесь уместно отметить, что еще в шестидесятых годах проф. Ф. H. Шведов, на основании произведенных им опытов, весьма горячо и убедительно доказывал верность основных положений Фарадея относительно роли изоляторов . На самом деле, однако, за много лет до работ Фарадея уже было открыто влияние изоляторов на электрические процессы. Еще в начале 70-х годов XVIII столетия Кавендиш наблюдал и весьма тщательно изучил значение природы изолирующего слоя в конденсаторе. Опыты Кэвендиша, как и впоследствии опыты Фарадея, показали увеличение электроемкости конденсатора, когда слой воздуха в этом конденсаторе заменяется такой же толщины слоем какого-либо твердого диэлектрика. Эти опыты дают даже возможность определить численные величины диэлектрических постоянных некоторых изолирующих веществ, причем эти величины получаются сравнительно немного отличающимися от тех, какие найдены в последнее время при употреблении более совершенных измерительных приборов. Но эта работа Кавендиша, как и другие его исследования по электричеству, приведшие его к установлению закона электрических взаимодействий, тождественного с законом, опубликованным в 1785 г. Кулоном, оставались неизвестными вплоть до 1879 г. Только в этом году мемуары Кавендиша были обнародованы Максвеллом , повторившим почти все опыты Кавендиша и сделавшим по поводу их многие, весьма ценные указания.

Потенциал

Как уже выше упомянуто, в основание электростатики, вплоть до появления работ Максвелла, был положен закон Кулона:

При допущении С = 1, т. е. при выражении количества электричества в так называемой абсолютной электростатической единице системы СГС, этот закон Кулона получает выражение:

Отсюда потенциальная функция или, проще, потенциал в точке, координаты которой (x, у, z), определяется формулой:

В которой интеграл распространяется на все электрические заряды в данном пространстве, а r обозначает расстояние элемента заряда dq до точки (x, у, z). Обозначая поверхностную плотность электричества на наэлектризованных телах через σ, а объемную плотность электричества в них через ρ, мы имеем

Здесь dS обозначает элемент поверхности тела, (ζ, η, ξ) - координаты элемента объема тела. Проекции на оси координат электрической силы F, испытываемой единицей положительного электричества в точке (x, у, z) находятся по формулам:

Поверхности, во всех точках которых V = пост., носят название эквипотенциальных поверхностей или, проще, поверхностей уровня. Линии, ортогональные к этим поверхностям, суть электрические силовые линии. Пространство, в котором могут быть обнаружены электрические силы, т. е. в котором могут быть построены силовые линии, носят название электрического поля. Сила, испытываемая единицей электричества в какой-либо точке этого поля, называется напряжением электрического поля в этой точке. Функция V обладает следующими свойствами: она однозначна, конечна, непрерывна. Её также можно задать так, чтобы она обращаалась в 0 в точках, отстоящих от данного распределения электричества на бесконечное расстояние. Потенциал сохраняет одну и ту же величину во всех точках какого-либо проводящего тела. Для всех точек земного шара, а также для всех проводников, металлически соединенных с землей, функция V равна 0 (при этом не обращается внимания на явление Вольты, о котором сообщено в статье Электризация). Обозначая через F величину электрической силы, испытываемой единицей положительного электричества в какой-нибудь точке на поверхности S, замыкающей собой часть пространства, и через ε - угол, образуемый направлением этой силы с внешней нормалью к поверхности S в той же точке, мы имеем

В этой формуле интеграл распространяется на всю поверхность S, a Q обозначает алгебраическую сумму количества электричества, заключающихся внутри замкнутой поверхности S. Равенство (4) выражает собой теорему, известную под названием теоремы Гаусса. Одновременно с Гауссом такое же равенство было получено Грином, почему некоторые авторы эту теорему называют теоремой Грина. Из теоремы Гаусса могут быть выведены как следствия,

здесь ρ обозначает объемную плотность электричества в точке (x, у, z);

такое уравнение относится ко всем точкам, в которых не имеется электричества

Здесь Δ - оператор Лапласа, n1 и n2 обозначают нормали в точке какой-либо поверхности, в которой поверхностная плотность электричества σ, нормали, проведенные в ту и в другую сторону от поверхности. Из теоремы Пуассона следует, что для проводящего тела, в котором во всех точках V = пост., должно быть ρ = 0. Поэтому выражение потенциала принимает вид

Из формулы, выражающей граничное условие, т. е. из формулы (7), следует, что на поверхности проводника

Причем n обозначает нормаль к этой поверхности, направленную от проводника внутрь изолирующей среды, прилегающей к этому проводнику. Из этой же формулы вывыводится

Здесь Fn обозначает силу, испытываемую единицей положительного электричества, находящегося в точке, бесконечно близко лежащей к поверхности проводника, имеющей в этом месте поверхностную плотность электричества, равную σ. Сила Fn направлена по нормали к поверхности в этом месте. Сила, испытываемая единицей положительного электричества, находящегося в самом электрическом слое на поверхности проводника и направленная по внешней нормали к этой поверхности, выражается через

Отсюда электрическое давление, испытываемое по направлению внешней нормали каждой единицей поверхности наэлектризованного проводника, выражается формулой

Приведенные уравнения и формулы дают возможность делать немало выводов, относящихся к вопросам, рассматриваемым в Э. Но все они могут быть заменены еще более общими, если воспользоваться тем, что содержится в теории электростатики, данной Максвеллом.

Электростатика Максвелла

Как уже упомянуто выше, Максвелл явился истолкователем идей Фарадея. Он облек эти идеи в математическую форму. Основание теории Максвелла заключается не в законе Кулона, а в принятии гипотезы, которая выражается в следующем равенстве:

Здесь интеграл распространяется по какой угодно замкнутой поверхности S, F обозначает величину электрической силы, которую испытывает единица электричества в центре элемента этой поверхности dS, ε обозначает угол, образуемый этой силой с внешней нормалью к элементу поверхности dS, К обозначает диэлектрический коэффициент среды, прилегающей к элементу dS, и Q обозначает алгебраическую сумму количеств электричества, заключающихся внутри поверхности S. Следствиями выражения (13) являются нижеследующие уравнения:

Эти уравнения более общи, чем уравнения (5) и (7). Они относятся к случаю каких угодно изотропных изолирующих сред. Функция V, являющаяся общим интегралом уравнения (14) и удовлетворяющая вместе с этим уравнению (15) для всякой поверхности, которая отделяет собой две диэлектрические среды с диэлектрическими коэффициентами K 1 и K 2 , а также условию V = пост. для каждого, находящегося в рассматриваемом электрическом поле проводника, представляет собой потенциал в точке (x, у, z). Из выражения (13) также следует, что кажущееся взаимодействие двух зарядов q и q 1 , находящихся в двух точках, расположенных в однородной изотропной диэлектрической среде на расстоянии r друг от друга, может быть представлено формулой

Т. е. это взаимодействие обратно пропорционально квадрату расстояния, как это должно быть согласно закону Кулона. Из уравнения (15) мы получаем для проводника:

Формулы эти более общие, чем вышеприведенные (9), (10) и (12).

представляет собой выражение потока электрической индукции через элемент dS. Проведя через все точки контура элемента dS линии, совпадающие с направлениями F в этих точках, мы получаем (для изотропной диэлектрической среды) трубку индукции. Для всех сечений такой трубки индукции, не заключающей внутри себя электричества, должно быть, как это следует из уравнения (14),

KFCos ε dS = пост.

Не трудно доказать, что если в какой-либо системе тел электрические заряды находятся в равновесии, когда плотности электричества соответственно суть σ1 и ρ1 или σ 2 и ρ 2 , то заряды будут в равновесии и тогда, когда плотности будут σ = σ 1 + σ 2 и ρ = ρ 1 + ρ 2  (принцип сложения зарядов, находящихся в равновесии). Равным образом легко доказать, что при данных условиях может быть только одно распределение электричества в телах, составляющих собой какую-либо систему.

Весьма важным оказывается свойство проводящей замкнутой поверхности, находящейся в соединении с землей. Такая замкнутая поверхность является экраном, защитой для всего пространства, заключенного внympu неё, от влияния каких угодно электрических зарядов, расположенных с внешней стороны поверхности. Вследствие этого электрометры и другие измерительные электрические приборы окружаются обыкновенно металлическими футлярами, соединяемыми с землей. Опыты показывают, что для таких электрич. экранов нет надобности употреблять сплошного металла, вполне достаточно эти экраны устраивать из металлических сеток или даже металлических решеток.

Система наэлектризованных тел обладает энергией, т. е. обладает способностью совершить определенную работу при полной потере своего электрического состояния. B электростатике выводится следующее выражение для энергии системы наэлектризованных тел:

В этой формуле Q и V обозначают соответственно какое-либо количество электричества в данной системе и потенциал в том месте, где находится это количество; знак ∑ указывает, что надо взять сумму произведений VQ для всех количеств Q данной системы. Если система тел представляет собой систему проводников, то для каждого такого проводника потенциал имеет одну и ту же величину во всех точках этого проводника, а потому в данном случае выражение для энергии получает вид:

Здесь 1, 2.. n суть значки разных проводников, входящих в состав системы. Это выражение может быть заменено другими, а именно, электрическая энергия системы проводящих тел может быть представлена или в зависимости от зарядов этих тел, или же в зависимости от потенциалов их, т. е. для этой энергии могут быть применены выражения:

В этих выражениях различные коэффициенты α и β зависят от параметров, определяющих собой положения проводящих тел в данной системе, а также формы и размеры их. При этом коэффициенты β с двумя одинаковыми значками, как то β11, β22, β33 и т. д. представляют собой электроемкости (см. Электроемкость) тел, отмеченных этими значками, коэффициенты β с двумя различными значками, как то β12, β23, β24, и т. д., представляют собой коэффициенты взаимной индукции двух тел, значки которых стоят у данного коэффициента. Имея выражение электрической энергии, мы получаем выражение для силы, какую испытывает какое-либо тело, значок которого i, и от действия которой параметр si, служащий для определения положения этого тела, получает приращение. Выражение этой силы будет

Электрическая энергия может быть представлена еще иначе, а именно, через

В этой формуле интегрирование распространяется по всему беспредельному пространству, F обозначает величину электрической силы, испытываемой единицей положительного электричества в точке (x, у, z), т. е. напряжение электрического поля в этой точке, а K обозначает диэлектрический коэффициент в этой же точке. При таком выражении электрической энергии системы проводящих тел эту энергию можно рассматривать распределенной только в изолирующих средах, причем на долю элемента dxdyds диэлектрика приходится энергий

Выражение (26) вполне соответствует взглядам на электрические процессы, которые были развиваемы Фарадеем и Максвеллом.

Чрезвычайно важной формулой в электростатике является формула Грина, а именно:

В этой формуле оба тройные интеграла распространяются на весь объем какого-либо пространства А, двойные - на все поверхности, ограничивающие это пространство, ∆V и ∆U обозначают суммы вторых производных от функций V и U по x, у, z; n - нормаль к элементу dS ограничивающей поверхности, направленную внутрь пространства A.

Примеры

Пример 1

Как частный случай формулы Грина получается формула, выражающая вышеприведенную теорему Гаусса. В Энциклопедическом Словаре не уместно касаться вопросов о законах распределения электричества на различных телах. Эти вопросы представляют собой весьма трудные задачи математической физики и для решения таких задач употребляются различные способы. Приведем здесь только для одного тела, а именно, для эллипсоида с полуосями а, b, с, выражение поверхностной плотности электричества σ в точке (x, у, z). Мы находим:

Здесь Q обозначает все количество электричества, находящееся на поверхности этого эллипсоида. Потенциал такого эллипсоида в какой-нибудь точке его поверхности, когда вокруг эллипсоида находится однородная изотропная изолирующая среда с диэлектрическим коэффициентом K, выражается через

Электроемкость эллипсоида получится из формулы

Пример 2

Пользуясь уравнением (14), полагая только в нем ρ = 0 и K = пост., и формулой (17), мы можем найти выражение для электроемкости плоского конденсатора с охранным кольцом и охранной коробкой, изолирующей слой в котором имеет диэлектрический коэффициент K. Это выражение имеет вид

Здесь S обозначает величину собирательной поверхности конденсатора, D - толщину изолирующего слоя его. Для конденсатора без охранного кольца и охранной коробки формула (28) будет давать только приближенное выражение электроемкости. Для электроемкости такого конденсатора дана формула Кирхгофом. И даже для конденсатора с охранными кольцом и коробкой формула (29) не представляет вполне строгого выражения электроемкости. Максвелл указал ту поправку, какую надо сделать в этой формуле, чтобы получить более строгий результат.

Энергия плоского конденсатора (с охранными кольцом и коробкой) выражается через

Здесь V1 и V2 суть потенциалы проводящих поверхностей конденсатора.

Пример 3

Для сферического конденсатора получается выражение электроемкости:

В котором R 1 и R 2 обозначают соответственно радиусы внутренней и внешней проводящей поверхности конденсатора. При помощи выражения для электрической энергии (формула 22) нетрудно устанавливается теория абсолютного и квадрантного электрометров

Нахождение величины диэлектрического коэффициента K какого-либо вещества, коэффициента, входящего почти во все формулы, с которыми приходится иметь дело в электростатике, может быть произведено весьма различными способами. Наиболее употребительные способы суть нижеследующие.

1) Сравнение электро емкостей двух конденсаторов, имеющих одинаковые размеры и форму, но у которых у одного изолирующим слоем является слой воздуха, у другого - слой испытуемого диэлектрика.

2) Сравнение притяжений между поверхностями конденсатора, когда этим поверхностям сообщается определенная разность потенциалов, но в одном случае между ними находится воздух (сила притяжения = F 0), в другом случае - испытуемый жидкий изолятор (сила притяжения = F). Диэлектрический коэффициент находится по формуле:

3) Наблюдения электрических волн (см. Электрические колебания), распространяющихся вдоль проволок. По теория Максвелла скорость распространения электрических волн вдоль проволок выражается формулой

В которой K обозначает диэлектрический коэффициент среды, окружающей собой проволоку, μ обозначает магнитную проницаемость этой среды. Можно положить для огромного большинства тел μ = 1, а потому получается

Обыкновенно сравнивают длины стоячих электрических волн, возникающих в частях одной и той же проволоки, находящихся в воздухе и в испытуемом диэлектрике (жидком). Определив эти длины λ 0 и λ, получают K = λ 0 2 / λ 2. По теории Максвелла следует, что при возбуждении электрического поля в каком-либо изолирующем веществе внутри этого вещества возникают особые деформации. Вдоль трубок индукции изолирующая среда является поляризованной. В ней возникают электрические смещения, которые можно уподобить перемещениям положительного электричества по направлению осей этих трубок, причем через каждое поперечное сечение трубки проходит количество электричества, равное

Теория Максвелла дает возможность найти выражения тех внутренних сил (сил натяжения и давления), которые являются в диэлектриках при возбуждении в них электрического поля. Этот вопрос был впервые рассмотрен самим Максвеллом, а позже и более обстоятельно Гельмгольцем . Дальнейшее развитие теории этого вопроса и тесно соединенной с этим теории электрострикции (т. е. теории, рассматривающей явления, зависящие от возникновения особых напряжений в диэлектриках при возбуждении в них электрического поля) принадлежит работам Лорберга, Кирхгофа, Дюгема, Н. Н. Шиллера и некоторых др.

Граничные условия

Закончим краткое изложение наиболее существенного из отдела электрострикции рассмотрением вопроса о преломлении трубок индукции. Представим себе в электрическом поле два диэлектрика, отделяющихся друг от друга какой-нибудь поверхностью S, с диэлектрическими коэффициентами К 1 и К 2 . Пусть в точках Р 1 и Р 2 , расположенных бесконечно близко к поверхности S по ту и по другую её сторону, величины потенциалов выражаются через V 1 и V 2 , а величины сил, испытываемых помещенной в этих точках единицей положительного электричества чрез F 1 и F 2 . Тогда для точки Р, лежащей на самой поверхности S, должно быть V 1 = V 2 ,


если ds представляет бесконечно малое перемещение по линии пересечения касательной плоскости к поверхности S в точке Р с плоскостью, проходящей через нормаль к поверхности в этой точке и через направление электрической силы в ней. С другой стороны, должно быть

Обозначим через ε 2 угол, составляемый силой F 2 с нормалью n 2 (внутрь второго диэлектрика), и через ε 1 угол, составляемый силой F 1 с той же нормалью n 2 Тогда, пользуясь формулами (31) и (30), найдем

Итак, на поверхности, отделяющей друг от друга два диэлектрика, электрическая сила претерпевает изменение в своем направлении подобно световому лучу, входящему из одной среды в другую. Это следствие теории оправдывается на опыте.

Материал из Википедии - свободной энциклопедии

Электростатика - это раздел физики, где изучаются свойства и взаимодействия неподвижных относительно инерциальной системы отсчета электрически заряженных тел или частиц, которые имеют электрический заряд.

Электрический заряд - это физическая величина, характеризующая свойство тел или частиц входить в электромагнитные взаимодействия и определяющая значения сил и энергий при этих взаимодействиях. В Международной системе единиц единицей измерения электрического заряда является кулон (Кл).

Различают два вида электрических зарядов:

  • положительные;
  • отрицательные.

Тело является электрически нейтральным, если суммарный заряд отрицательно заряженных частиц, входящих в состав тела, равен суммарному заряду положительно заряженных частиц.

Стабильными носителями электрических зарядов являются элементарные частицы и античастицы.

Носители положительного заряда - протон и позитрон, а отрицательного - электрон и антипротон.

Полный электрический заряд системы равен алгебраической сумме зарядов тел, входящих в систему, т. е.:

Закон сохранения заряда : в замкнутой, электрически изолированной, системе полный электрический заряд остается неизменным, какие бы процессы ни происходили внутри системы.

Изолированная система - это система, в которую из внешней среды через ее границы не проникают электрически заряженные частицы либо какие-нибудь тела.

Закон сохранения заряда - это следствие сохранения числа частиц, совершается перераспределение частиц в пространстве.

Проводники - это тела, имеющие электрические заряды, которые могут свободно перемещаться на значительные расстояния.
Примеры проводников: металлы в твердом и жидком состояниях, ионизированные газы, растворы электролитов.

Диэлектрики - это тела, имеющие заряды, которые не могут перемещаться от одной части тела к другой, т. е. связанные заряды.
Примеры диэлектриков: кварц, янтарь, эбонит, газы в нормальных условиях.

Электризация - это такой процесс, вследствии которого тела приобретают способность принимать участие в электромагнитном взаимодействии, т. е. приобретают электрический заряд.

Электризация тел - это такой процесс перераспределения электрических зарядов, находящихся в телах, в результате которого заряды тел становятся противоположных знаков.

Виды электризации:

  • Электризация за счет электропроводности . Когда два металлических тела соприкасаются, одно заряженное и другое нейтральное, то происходит переход некоторого числа свободных электронов с заряженного тела на нейтральное, если заряд тела был отрицательным, и наоборот, если заряд тела положителен.

    В итоге этого в первом случае, нейтральное тело получит отрицательный заряд, во втором - положительный.

  • Электризация трением . В результате соприкосновения при трении некоторых нейтральных тел электроны передаются от одного тела к другому. Электризация трением есть причина возникновения статического электричества, разряды которого можно заметить, например, если расчесывать волосы пластмассовой расческой или снимая с себя синтетические рубашку или свитер.
  • Электризация через влияние возникает, если заряженное тело поднести к концу нейтрального металлического стержня, при этом в нем случается нарушение равномерного распределения положительных и отрицательных зарядов. Их распределение происходит своеобразным образом: в одной части стержня возникает избыточный отрицательный заряд, а в другой - положительный. Такие заряды называются индуцированными, возникновение которых объясняется движением свободных электронов в металле под действием электрического поля поднесенного к нему заряженного тела.

Точечный заряд - это заряженное тело, размерами которого в данных условиях можно пренебречь.

Точечный заряд - это материальная точка, которая имеет электрический заряд.
Заряженные тела взаимодействуют друг с другом следующим образом: разноименно заряженные притягиваются, одноименно заряженные отталкиваются.

Закон Кулона : сила взаимодействия двух точечных неподвижных зарядов q1 и q2 в вакууме прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними:

Главное свойство электрического поля - это то, что электрическое поле оказывает влияние на электрические заряды с некоторой силой. Электрическое поле является частным случаем электромагнитного поля.

Электростатическое поле - это электрическое поле неподвижных зарядов. Напряженность электрического поля - векторная величина, характеризующая электрическое поле в данной точке. Напряженность поля в данной точке определяется отношением силы, воздействующей на точечный заряд, помещенный в данную точку поля, к величине этого заряда:

Напряженность - это силовая характеристика электрического поля; она позволяет рассчитывать силу, действующую на этот заряд: F = qE.

В Международной системе единиц единицей измерения напряженности является вольт на метр Линии напряженности - это воображаемые линии, необходимые для использования графического изображения электрического поля. Линии напряженности проводят так, чтобы касательные к ним в каждой точке пространства совпадали по направлению с вектором напряженности поля в данной точке.

Принцип суперпозиции полей: напряженность поля от нескольких источников равна векторной сумме напряженностей полей каждого из них.

Электрический диполь - это совокупность двух равных по модулю разноименных точечных зарядов (+q и –q), располагающихся на некотором расстоянии друг от друга.

Дипольный (электрический) момент - это векторная физическая величина, являющаяся основной характеристикой диполя.
В Международной системе единиц единицей измерения дипольного момента является кулон-метр (Кл/м).

Виды диэлектриков:

  • Полярные , в состав которых входят молекулы, у которых центры распределения положительных и отрицательных зарядов не совпадают (электрические диполи).
  • Неполярные , в молекулах и атомах которых центры распределения положительных и отрицательных зарядов совпадают.

Поляризация - это процесс, который происходит при помещении диэлектриков в электрическое поле.

Поляризация диэлектриков - это процесс смещения связанных положительных и отрицательных зарядов диэлектрика в противоположные стороны под действием внешнего электрического поля.

Диэлектрическая проницаемость - это физическая величина, которая характеризует электрические свойства диэлектрика и определяется отношением модуля напряженности электрического поля в вакууме к модулю напряженности этого поля внутри однородного диэлектрика.

Диэлектрическая проницаемость - величина безразмерная и выражается в безразмерных единицах.

Сегнетоэлектрики - это группа кристаллических диэлектриков, которые не имеют внешнего электрического поля и вместо него возникает спонтанная ориентация дипольных моментов частиц.

Пьезоэлектрический эффект - это эффект при механических деформациях некоторых кристаллов в определенных направлениях, где на их гранях возникают электрические разноименные заряды.

Потенциал электрического поля. Электроемкость

Потенциал электростатический - это физическая величина, характеризующая электростатическое поле в данной точке, она определяется отношением потенциальной энергии взаимодействия заряда с полем к значению заряда, помещенного в данную точку поля:

В Международной системе единиц единицей измерения является вольт (В).
Потенциал поля точечного заряда определяется:

При условиях если q > 0, то k > 0; если q

Принцип суперпозиции полей для потенциала: если электростатическое поле создается несколькими источниками, то его потенциал в данной точке пространства определяется как алгебраическая сумма потенциалов:

Разность потенциалов между двумя точками электрического поля - это физическая величина, определяемая отношением работы электростатических сил по перемещению положительного заряда из начальной точки в конечную к этому заряду:

Эквипотенциальные поверхности - это геометрическая область точек электростатического поля, где значения потенциала одинаковы.

Электрическая емкость - это физическая величина, которая характеризует электрические свойства проводника, количественная мера его способности удерживать электрический заряд.

Электрическая емкость уединенного проводника определяется отношением заряда проводника к его потенциалу, при этом будем предполагать, что потенциал поля проводника принят равным нулю в бесконечноудаленной точке:

Закон Ома

Однородный участок цепи - это участок цепи, который не имеет источника тока. Напряжение на таком участке будет определяться разностью потенциалов на его концах, т. е.:

В 1826 г. немецкий ученый Г. Ом открыл закон, который определяет соотношение между силой тока в однородном участке цепи и напряжением на нем: сила тока в проводнике прямо пропорциональна напряжению на нем. , где G - коэффициент пропорциональности, который называется в этом законе электропроводностью или проводимостью проводника, которая определяется формулой.

Электропроводность проводника - это физическая величина, которая является обратной его сопротивлению.

В Международной системе единиц единицей измерения электропроводности является сименс (См).

Физический смысл сименса : 1 См - это проводимость проводника сопротивлением 1 Ом.
Чтобы получить закон Ома для участка цепи, необходимо подставить в формулу, приведенную выше, вместо электропроводности сопротивление R, тогда:

Закон Ома для участка цепи : сила тока в участке цепи прямо пропорциональна напряжению на нем и обратно пропорциональна сопротивлению участка цепи.

Закон Ома для полной цепи : сила тока в неразветвленной замкнутой цепи, включающая источник тока, прямо пропорциональна электродвижущей силе этого источника и обратнопропорциональна сумме внешнего и внутреннего сопротивлений данной цепи:

Правила знаков :

  • Если при обходе цепи в выбранном направлении ток внутри источника идет в направлении обхода, то ЭДС этого источника считается положительной.
  • Если при обходе цепи в выбранном направлении ток внутри источника идет в противоположном направлении, то ЭДС этого источника считается отрицательной.

Электродвижущая сила (ЭДС) - это физическая величина, которая характеризует действие сторонних сил в источниках тока, это энергетическая характеристика источника тока. Для замкнутого контура ЭДС определяется как отношение работы сторонних сил по перемещению положительного заряда вдоль замкнутого контура к этому заряду:

В Международной системе единиц единицей измерения ЭДС является вольт. При разомкнутой цепи ЭДС источника тока равна электрическому напряжению на его зажимах.

Закон Джоуля-Ленца : количество теплоты, выделяемое проводником с током, определяется произведением квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику:

При перемещении электрическое поле заряда по участку цепи делает работу, которая определяется произведением заряда на напряжение на концах этого участка цепи:

Мощность постоянного тока - это физическая величина, которая характеризует скорость совершения полем работы по перемещению заряженных частиц по проводнику и определяется отношением работы тока за время к этому промежутку времени:

Правила Кирхгофа , которые применяются для расчета разветвленных цепей постоянного тока, суть которого заключается в отыскании по заданным сопротивлениям участков цепи и приложенным к ним ЭДС сил токов в каждом участке.

Первое правило - правило узлов: алгебраическая сумма токов, которые сходятся в узле, - это точка, в которой есть более двух возможных направлений тока,она равна нулю

Второе правило - правило контуров: в любом замкнутом контуре, в разветвленной электрической цепи алгебраическая сумма произведений сил токов на сопротивление соответствующих участков этого контура определяется алгебраической суммой приложенных в нем ЭДС:

Магнитное поле - это одна из форм проявления электромагнитного поля, специфика которой состоит в том, что это поле воздействует только на движущиеся частицы и тела, имеющие электрический заряд, а также на намагниченные тела независимо от состояния их движения.

Вектор магнитной индукции - это векторная величина, которая характеризует магнитное поле в любой точке пространства, определяющая отношение силы, действующей со стороны магнитного поля на элемент проводника с электрическим током, к произведению силы тока и длины элемента проводника, равная по модулю отношению магнитного потока сквозь поперечное сечение площади к площади этого поперечного сечения.

В Международной системе единиц единицей индукции является тесла (Тл).

Магнитная цепь - это совокупность тел или областей пространства, где сосредоточено магнитное поле.

Магнитный поток (поток магнитной индукции) - это физическая величина, которая определяется произведением модуля вектора магнитной индукции на площадь плоской поверхности и на косинус угла между векторами нормали к плоской поверхности / угол между вектором нормали и направлением вектора индукции.

В Международной системе единиц единицей магнитного потока является вебер (Вб).
Теорема Остроградского-Гаусса для потока магнитной индукции: магнитный поток сквозь произвольную замкнутую поверхность равен нулю:

Закон Ома для замкнутой магнитной цепи:

Магнитная проницаемость - это физическая величина, которая характеризует магнитные особенности вещества, которая определяется отношением модуля вектора магнитной индукции в среде к модулю вектора индукции в той же точке пространства в вакууме:

Напряженность магнитного поля - это векторная величина, которая определяет и характеризует магнитное поле и равна:

Сила Ампера - это сила, которая действует со стороны магнитного поля на проводник с током. Элементарная сила Ампера определяется соотношением:

Закон Ампера : модуль силы, воздействующей на небольшой отрезок проводника, по которому течет ток, со стороны однородного магнитного поля с индукцией, составляющей с элементом угол

Принцип суперпозиции : когда в данной точке пространства многообразные источники формируют магнитные поля, индукции которых В1,В2, .., то результирующая индукция поля в этой точке равна:

Правило буравчика или правило правого винта: если направление поступательного движения острия буравчика при ввинчивании совпадает с направлением тока в пространстве, то направление вращательного движения буравчика в каждой точке совпадает с направлением вектора магнитной индукции.

Закон Био-Савара-Лапласа: определяет величину и направление вектора магнитной индукции в любой точке магнитного поля, создаваемого в вакууме элементом проводника определенной длины с током:

Движение заряженных частиц в электрическом и магнитном полях Сила Лоренца - это сила, влияющая на движущуюся частицу со стороны магнитного поля:

Правило левой руки :

  1. Необходимо располагать левую руку так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца были сонаправлены с током, тогда отогнутый на 90° большой палец укажет направление силы Ампера.
  2. Необходимо располагать левую руку так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали с направлением скорости частицы при положительном заряде частицы или были направлены в сторону, противоположную скорости частицы при отрицательном заряде частицы, тогда отогнутый на 90° большой палец покажет направление силы Лоренца, действующей на заряженную частицу.

Если происходит совместное действие на движущийся заряд электрического и магнитного полей, то результирующая сила будет определяться:

Масс-спектрографы и масс-спектрометры - это приборы, которые предназначены специально для точных измерений относительных атомных масс элементов.

Закон Фарадея. Правило Ленца

Электромагнитная индукция - это явление, которое состоит в том, что в проводящем контуре, находящемся в переменном магнитном поле, возникает ЭДС индукции.

Закон Фарадея : ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока Ф сквозь поверхность, ограниченную этим контуром:

Индукционный ток - это ток, который образуется, если заряды под действием сил Лоренца начинают перемещаться.

Правило Ленца : индукционный ток, появляющийся в замкнутом контуре, всегда имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение внешнего магнитного поля, которое вызвало этот ток.

Порядок использования правила Ленца для определения направления индукционного тока:

Вихревое поле - это поле, в котором линии напряженности представляют собой замкнутые линии, причиной которых является порождение электрического поля магнитным.
Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Токи Фуко - это большие индукционные токи, появляющиеся в массивных проводниках из-за того, что их сопротивление мало. Количество теплоты, которое выделяется в единицу времени вихревыми токами, прямо пропорционально квадрату частоты изменения магнитного поля.

Самоиндукция. Индуктивность

Самоиндукция - это явление, состоящее в том, что изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, образовывающий это поле.

Магнитный поток Ф контура с током I определяется:
Ф = L, где L - это коэффициент самоиндукции (индуктивность тока).

Индуктивность - это физическая величина, которая является характеристикой ЭДС самоиндукции, появляющейся в контуре при изменении силы тока, определяется отношением магнитного потока через поверхность, ограниченную проводником, к силе постоянного тока в цепи:

В Международной системе единиц единицей измерения индуктивности является генри (Гн).
ЭДС самоиндукции определяется:

Энергия магнитного поля определяется:

Объемная плотность энергии магнитного поля в изотропной и неферромагнитной среде определяется:

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Вы сейчас здесь: Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q . В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10 –6 Кл), нанокулонами (1 нКл = 10 –9 Кл) и пикокулонами (1 пКл = 10 –12 Кл). Электрический заряд обладает следующими свойствами:

    1. Электрический заряд является видом материи.

    2. Электрический заряд не зависит от движения частицы и от ее скорости.

    3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

    4. Существует два рода электрических зарядов, условно названных положительными и отрицательными .

    5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

    6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом . Его значение:

    e = 1,602177·10 –19 Кл ≈ 1,6·10 –19 Кл.

    Электрический заряд любого тела всегда кратен элементарному заряду:

    где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е ; 1,7е ; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

    В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

    Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q 1 и q 2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

    С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны , отрицательно заряженные электроны и нейтральные частицы – нейтроны . Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e .

    В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

    Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

    1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

    где: L – длина нити. Измеряется в Кл/м.

    2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

    где: S – площадь поверхности тела. Измеряется в Кл/м 2 .

    3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

    где: V – объем тела. Измеряется в Кл/м 3 .

    Обратите внимание на то, что масса электрона равна:

    m e = 9,11∙10 –31 кг.

    Закон Кулона

    Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

    Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

    где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

    k = 9∙10 9 м/Ф.

    Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

    Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

    где: ε 0 = 8,85∙10 –12 Ф/м – электрическая постоянная.

    Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

    Запомните также два важных определения:

    Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

    Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε .

    Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

    Электрическое поле и его напряженность

    По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле . Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

    Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не вносит заметного перераспределения исследуемых зарядов. Для количественного определения электрического поля вводится силовая характеристика - напряженность электрического поля E .

    Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на пробный заряд, помещенный в данную точку поля, к величине этого заряда:

    Напряженность электрического поля – векторная физическая величина. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд. Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим.

    Для наглядного представления электрического поля используют силовые линии . Эти линии проводятся так, чтобы направление вектора напряженности в каждой точке совпадало с направлением касательной к силовой линии. Силовые линии обладают следующими свойствами.

    • Силовые линии электростатического поля никогда не пересекаются.
    • Силовые линии электростатического поля всегда направлены от положительных зарядов к отрицательным.
    • При изображении электрического поля с помощью силовых линий их густота должна быть пропорциональна модулю вектора напряженности поля.
    • Силовые линии начинаются на положительном заряде или бесконечности, а заканчиваются на отрицательном или бесконечности. Густота линий тем больше, чем больше напряжённость.
    • В данной точке пространства может проходить только одна силовая линия, т.к. напряжённость электрического поля в данной точке пространства задаётся однозначно.

    Электрическое поле называют однородным, если вектор напряжённости одинаков во всех точках поля. Например, однородное поле создаёт плоский конденсатор – две пластины, заряженные равным по величине и противоположным по знаку зарядом, разделённые слоем диэлектрика, причём расстояние между пластинами много меньше размеров пластин.

    Во всех точках однородного поля на заряд q , внесённый в однородное поле с напряжённостью E , действует одинаковая по величине и направлению сила, равная F = Eq . Причём, если заряд q положительный, то направление силы совпадает с направлением вектора напряжённости, а если заряд отрицательный, то вектора силы и напряжённости противоположно направлены.

    Положительных и отрицательных точечных зарядов изображены на рисунке:

    Принцип суперпозиции

    Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

    Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции . В соответствии с законом Кулона, напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю:

    Это поле называется кулоновским. В кулоновском поле направление вектора напряженности зависит от знака заряда Q : если Q > 0, то вектор напряженности направлен от заряда, если Q < 0, то вектор напряженности направлен к заряду. Величина напряжённости зависит от величины заряда, среды, в которой находится заряд, и уменьшается с увеличением расстояния.

    Напряженность электрического поля, которую создает заряженная плоскость вблизи своей поверхности:

    Итак, если в задаче требуется определить напряженность поля системы зарядов, то надо действовать по следующему алгоритму :

    1. Нарисовать рисунок.
    2. Изобразить напряженность поля каждого заряда по отдельности в нужной точке. Помните, что напряженность направлена к отрицательному заряду и от положительного заряда.
    3. Вычислить каждую из напряжённостей по соответствующей формуле.
    4. Сложить вектора напряжённостей геометрически (т.е. векторно).

    Потенциальная энергия взаимодействия зарядов

    Электрические заряды взаимодействуют друг с другом и с электрическим полем. Любое взаимодействие описывает потенциальной энергией. Потенциальная энергия взаимодействия двух точечных электрических зарядов рассчитывается по формуле:

    Обратите внимание на отсутствие модулей у зарядов. Для разноименных зарядов энергия взаимодействия имеет отрицательное значение. Такая же формула справедлива и для энергии взаимодействия равномерно заряженных сфер и шаров. Как обычно, в этом случае расстояние r измеряется между центрами шаров или сфер. Если же зарядов не два, а больше, то энергию их взаимодействия следует считать так: разбить систему зарядов на все возможные пары, рассчитать энергию взаимодействия каждой пары и просуммировать все энергии для всех пар.

    Задачи по данной теме решаются, как и задачи на закон сохранения механической энергии: сначала находится начальная энергия взаимодействия, потом конечная. Если в задаче просят найти работу по перемещению зарядов, то она будет равна разнице между начальной и конечной суммарной энергией взаимодействия зарядов. Энергия взаимодействия так же может переходить в кинетическую энергию или в другие виды энергии. Если тела находятся на очень большом расстоянии, то энергия их взаимодействия полагается равной 0.

    Обратите внимание: если в задаче требуется найти минимальное или максимальное расстояние между телами (частицами) при движении, то это условие выполнится в тот момент времени, когда частицы движутся в одну сторону с одинаковой скоростью. Поэтому решение надо начинать с записи закона сохранения импульса, из которого и находится эта одинаковая скорость. А далее следует писать закон сохранения энергии с учетом кинетической энергии частиц во втором случае.

    Потенциал. Разность потенциалов. Напряжение

    Электростатическое поле обладает важным свойством: работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

    Следствием независимости работы от формы траектории является следующее утверждение: работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

    Свойство потенциальности (независимости работы от формы траектории) электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. А физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

    Потенциал φ является энергетической характеристикой электростатического поля. В Международной системе единиц (СИ) единицей потенциала (а значит и разности потенциалов, т.е. напряжения) является вольт [В]. Потенциал - скалярная величина.

    Во многих задачах электростатики при вычислении потенциалов за опорную точку, где значения потенциальной энергии и потенциала обращаются в ноль, удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом: потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

    Вспомнив формулу для потенциальной энергии взаимодействия двух точечных зарядов и разделив ее на величину одного из зарядов в соответствии с определением потенциала получим, что потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

    Потенциал рассчитанный по этой формуле может быть положительным и отрицательным в зависимости от знака заряда создавшего его. Эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при r R (снаружи от шара или сферы), где R – радиус шара, а расстояние r отсчитывается от центра шара.

    Для наглядного представления электрического поля наряду с силовыми линиями используют эквипотенциальные поверхности . Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала. Силовые линии электрического поля всегда перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы.

    Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

    В однородном электрическом поле существует связь между напряженностью поля и напряжением:

    Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

    Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

    В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

    В этих формулах:

    • φ – потенциал электрического поля.
    • φ – разность потенциалов.
    • W – потенциальная энергия заряда во внешнем электрическом поле.
    • A – работа электрического поля по перемещению заряда (зарядов).
    • q – заряд, который перемещают во внешнем электрическом поле.
    • U – напряжение.
    • E – напряженность электрического поля.
    • d или ∆l – расстояние на которое перемещают заряд вдоль силовых линий.

    Во всех предыдущих формулах речь шла именно о работе электростатического поля, но если в задаче говорится, что «работу надо совершить», или идет речь о «работе внешних сил», то эту работу следует считать так же, как и работу поля, но с противоположным знаком.

    Принцип суперпозиции потенциала

    Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов (при этом знак потенциала поля зависит от знака заряда, создавшего поле):

    Обратите внимание, насколько легче применять принцип суперпозиции потенциала, чем напряженности. Потенциал – скалярная величина, не имеющая направления. Складывать потенциалы – это просто суммировать численные значения.

    Электрическая емкость. Плоский конденсатор

    При сообщении проводнику заряда всегда существует некоторый предел, более которого зарядить тело не удастся. Для характеристики способности тела накапливать электрический заряд вводят понятие электрической емкости . Емкостью уединенного проводника называют отношение его заряда к потенциалу:

    В системе СИ емкость измеряется в Фарадах [Ф]. 1 Фарад – чрезвычайно большая емкость. Для сравнения, емкость всего земного шара значительно меньше одного фарада. Емкость проводника не зависит ни от его заряда, ни от потенциала тела. Аналогично, плотность не зависит ни от массы, ни от объема тела. Емкость зависит лишь от формы тела, его размеров и свойств окружающей его среды.

    Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

    Величина электроемкости проводников зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами , а проводники, составляющие конденсатор, называются обкладками .

    Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским . Электрическое поле плоского конденсатора в основном локализовано между пластинами.

    Каждая из заряженных пластин плоского конденсатора создает вблизи своей поверхности электрическое поле, модуль напряженности которого выражается соотношением уже приводившимся выше. Тогда модуль напряженности итогового поля внутри конденсатора, создаваемого двумя пластинами, равен:

    За пределами конденсатора, электрические поля двух пластин направлены в разные стороны, и поэтому результирующее электростатическое поле E = 0. может быть рассчитана по формуле:

    Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Обратите внимание, что S в этой формуле есть площадь только одной обкладки конденсатора. Когда в задаче говорят о «площади обкладок», то имеют в виду именно эту величину. На 2 умножать или делить её не надо никогда.

    Еще раз приведем формулу для заряда конденсатора . Под зарядом конденсатора понимают только заряд его положительной обкладки:

    Сила притяжения пластин конденсатора. Сила, действующая на каждую обкладку, определяется не полным полем конденсатора, а полем, созданным противоположной обкладкой (сама на себя обкладка не действует). Напряженность этого поля равна половине напряженности полного поля, и сила взаимодействия пластин:

    Энергия конденсатора. Ее же называют энергией электрического поля внутри конденсатора. Опыт показывает, что заряженный конденсатор содержит запас энергии. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор. Существует три эквивалентные формы записи формулы для энергии конденсатора (они следуют одна из другой если воспользоваться соотношением q = CU ):

    Особое внимание обращайте на фразу: «Конденсатор подключён к источнику». Это означает, что напряжение на конденсаторе не изменяется. А фраза «Конденсатор зарядили и отключили от источника» означает, что заряд конденсатора не изменится.

    Энергия электрического поля

    Электрическую энергию следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Энергия заряженных тел сосредоточена в пространстве, в котором есть электрическое поле, т.е. можно говорить об энергии электрического поля. Например, у конденсатора энергия сосредоточена в пространстве между его обкладками. Таким образом, имеет смысл ввести новую физическую характеристику – объёмную плотность энергии электрического поля. На примере плоского конденсатора, можно получить такую формулу для объёмной плотности энергии (или энергии единицы объёма электрического поля):

    Соединения конденсаторов

    Параллельное соединение конденсаторов – для увеличения ёмкости. Конденсаторы соединены одноименно заряженными обкладками, как бы увеличивая площадь одинаково заряженных пластин. Напряжение на всех конденсаторах одинаковое, общий заряд равен сумме зарядов каждого из конденсаторов, и общая ёмкость также равна сумме емкостей всех конденсаторов соединенных параллельно. Выпишем формулы для параллельного соединения конденсаторов:

    При последовательном соединении конденсаторов общая ёмкость батареи конденсаторов всегда меньше, чем ёмкость наименьшего конденсатора, входящего в батарею. Применяется последовательное соединение для увеличения напряжения пробоя конденсаторов. Выпишем формулы для последовательного соединения конденсаторов. Общая емкость последовательно соединенных конденсаторов находится из соотношения:

    Из закона сохранения заряда следует, что заряды на соседних обкладках равны:

    Напряжение равно сумме напряжений на отдельных конденсаторах.

    Для двух последовательно соединённых конденсаторов формула выше даст нам следующее выражение для общей емкости:

    Для N одинаковых последовательно соединённых конденсаторов:

    Проводящая сфера

    Напряженность поля внутри заряженного проводника равна нулю. В противном случае на свободные заряды внутри проводника действовала бы электрическая сила, которая вынуждала бы эти заряды двигаться внутри проводника. Это движение, в свою очередь, приводило бы к разогреванию заряженного проводника, чего на самом деле не происходит.

    Факт того, что внутри проводника нет электрического поля можно понять и по-другому: если бы оно было то заряженные частицы опять таки двигались бы, причем они бы двигались именно так, чтобы свести это поле к нолю своим собственным полем, т.к. вообще-то двигаться им не хотелось бы, ведь всякая система стремится к равновесию. Рано или поздно все двигавшиеся заряды остановились бы именно в том месте, чтобы поле внутри проводника стало равно нолю.

    На поверхности проводника напряжённость электрического поля максимальна. Величина напряжённости электрического поля заряженного шара за его пределами убывает по мере удаления от проводника и рассчитывается по формуле, аналогичной формулам для напряженности поля точечного заряда, в которой расстояния отсчитываются от центра шара.

    Так как напряженность поля внутри заряженного проводника равна нулю, то потенциал во всех точках внутри и на поверхности проводника одинаков (только в этом случае разность потенциалов, а значит и напряжённость равна нулю). Потенциал внутри заряженного шара равен потенциалу на поверхности. Потенциал за пределами шара вычисляется по формуле, аналогичной формулам для потенциала точечного заряда, в которой расстояния отсчитываются от центра шара.

    Радиуса R :

    Если шар окружен диэлектриком, то:

    Свойства проводника в электрическом поле

    1. Внутри проводника напряженность поля всегда равна нулю.
    2. Потенциал внутри проводника во всех точках одинаков и равен потенциалу поверхности проводника. Когда в задаче говорят, что «проводник заряжен до потенциала … В», то имеют в виду именно потенциал поверхности.
    3. Снаружи от проводника вблизи от его поверхности напряженность поля всегда перпендикулярна поверхности.
    4. Если проводнику сообщить заряд, то он весь распределится по очень тонкому слою вблизи поверхности проводника (обычно говорят, что весь заряд проводника распределяется на его поверхности). Это легко объясняется: дело в том, что сообщая заряд телу, мы передаем ему носители заряда одного знака, т.е. одноименные заряды, которые отталкиваются. А значит они будут стремиться разбежаться друг от друга на максимальное расстояние из всех возможных, т.е. скопятся у самых краев проводника. Как следствие, если из проводника удалить сердцевину, то его электростатические свойства никак не изменятся.
    5. Снаружи проводника напряженность поля тем больше, чем кривее поверхность проводника. Максимальное значение напряженности достигается вблизи остриев и резких изломов поверхности проводника.

    Замечания к решению сложных задач

    1. Заземление чего-либо означает соединение проводником данного объекта с Землей. При этом потенциалы Земли и имеющегося объекта выравниваются, а необходимые для этого заряды перебегают по проводнику с Земли на объект либо наоборот. При этом нужно учитывать несколько факторов, которые следуют из того, что Земля несоизмеримо больше любого объекта находящегося не ней:

    • Общий заряд Земли условно равен нолю, поэтому ее потенциал также равен нолю, и он останется равным нолю после соединения объекта с Землей. Одним словом, заземлить – означает обнулить потенциал объекта.
    • Для обнуления потенциала (а значит и собственного заряда объекта, который мог быть до этого как положительным так и отрицательным), объекту придется либо принять либо отдать Земле некоторый (возможно даже очень большой) заряд, и Земля всегда сможет обеспечить такую возможность.

    2. Еще раз повторимся: расстояние между отталкивающимися телами минимально в тот момент, когда их скорости становятся равны по величине и направлены в одну сторону (относительная скорость зарядов равна нулю). В этот момент потенциальная энергия взаимодействия зарядов максимальна. Расстояние между притягивающимися телами максимально, также в момент равенства скоростей, направленных в одну сторону.

    3. Если в задаче имеется система, состоящая из большого количества зарядов, то необходимо рассматривать и расписывать силы, действующие на заряд, который не находится в центре симметрии.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Последние материалы раздела:

    Христианская Онлайн Энциклопедия
    Христианская Онлайн Энциклопедия

    Скачать видео и вырезать мп3 - у нас это просто!Наш сайт - это отличный инструмент для развлечений и отдыха! Вы всегда можете просмотреть и скачать...

    Принятие христианства на руси
    Принятие христианства на руси

    КРЕЩЕНИЕ РУСИ, введение христианства в греко православной форме как государственной религии (конец 10 в.) и его распространение (11 12 вв.) в...

    Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение
    Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение

    Иногда в самый разгар лета листья теряют зеленый цвет. Такое преждевременное окрашивание листьев, не отработавших положенный срок, – показатель...