Футуролог александр чулок о нано-, био-, инфо- и когнитивных технологиях будущего. Футуролог александр чулок о нано-, био-, инфо- и когнитивных технологиях будущего Кто составил алгоритм самосборки клетки

Заместитель директора Форсайт-центра Института статистических исследований и экономики знаний НИУ ВШЭ Александр Чулок прочитал в ЦПКиО им. Горького лекцию, посвященную научно-техническому прогрессу и его влиянию на человечество. Помимо темы развития технологий, Чулок рассказал о возникновении новых рынков и смерти старых, а также о проблемах, связанных с этими процессами. «Лента.ру» записала основные тезисы лекции.

В ответ на вопрос «как сейчас угадать будущее?» вынужден вас огорчить: это практически невозможно. Однако будущее можно сформировать таким, каким мы хотим его видеть. Наступила экономика ожиданий, которая во многом обусловлена принципиально новыми потребностями, новыми подходами к работе с информацией. Теперь я кратко расскажу о том, какие ключевые изменения ждут нас в ближайшие 20 лет в основных секторах экономики.

Медицина и здравоохранение

Здоровье - это первое, что волнует человека. В России все более заметен тренд на заботу о своем физическом состоянии: все хотят быть подтянутыми, красивыми, спортивными и, конечно, здоровыми. В сфере здравоохранения сейчас наблюдается отчетливая тенденция к персонализации.

Покажу на таком примере. Медицинские разработки позволят адаптировать схему лечения под конкретного человека с опорой на расшифровку его генома (уже сейчас «базовый» набор стоит 100 евро, а что будет, когда стоимость упадет в десять раз?), анализ его окружения, того, как он живет, чем дышит. В перспективе вместо стандартных лекарств будут продаваться индивидуальные схемы лечения, согласно которым, скажем, вам нужно вставать в 6 утра, спать до 9, обязательно есть клубнику и ни в коем случае не находиться на солнце до 10 вечера в Турции, но если это будет солнце Египта - то тогда вопросов нет.

Отдельный вопрос - будут ли пациенты придерживаться необходимой схемы лечения? Большинство принимают таблетки, скажем, не пять дней, как положено, а три и бросают - помогло же, зачем дальше принимать? В случае с хроническими заболеваниями почти каждый второй игнорирует предписания врачей. Забыть о графике приема лекарств и оптимизировать их дозировку позволят имплантируемые микрочипы.

Надеюсь, мы увидим конец традиционной диспансеризации: не нужно будет идти в клинику сдавать анализы, за состоянием организма будет следить специальный наручный браслет. Уже существуют мобильные устройства, фиксирующие десятки разных биометрических показателей.

Готовы ли к таким изменениям большие фармакологические компании? Очевидно, им придется адаптироваться. Как и аптекам, которые в своем нынешнем виде тоже станут не нужны, ведь человек сможет напечатать любой препарат на домашнем 3D-принтере.

С развитием 3D-принтинга связан следующий тренд - замена органов. В прошлом году в Бельгии старушке заменили челюсть, напечатав ее на 3D-принтере. Новость тогда быстро облетела весь мир, однако в общей сложности операция обошлась под миллион евро. Через 20 лет у многих людей в организме появится какой-либо напечатанный орган. Сейчас уже печатают легкое, почку, глаз.

Уйдут в прошлое попытки «починить» то, что уже «сломалось», врачи не будут говорить, мол, вот заболеете, тогда и приходите. Медицина, которая сейчас развивается в США, Германии, Израиле, - это медицина профилактики. Ее базовая задача: предупреждать болезнь, а не лечить ее последствия.

Улучшение свойств человека - еще одна из бурно развивающихся тенденций в медицине. Сейчас происходит сращивание нано-, био-, инфо- и когнитивных технологий, позволяющих кардинальным образом усилить человека, оптимизировать его интеллектуальные и физические особенности буквально за гранью интуиции самого гениального конструктора. Несколько лет назад в швейцарском городе Люцерн состоялся съезд футурологов, которые говорили, что к 2045 году человек обретет бессмертие, а мысли будут передаваться от человека к человеку, что может привести к образованию новых сообществ.

Теперь представьте себе такую картину: 120-летний старичок, который ГТО сдает лучше тридцатилетнего, бегает кросс и у которого мозги работают в пять раз лучше, а опыта в десять раз больше. Работодатель возьмет его, а не молодого, которого еще многому надо обучать. Что же делать 30-летним «лоботрясам»? И это глобальный вызов. Многие страны об этом уже всерьез задумались.

Сейчас появилось много аналитики на основе анализа данных соцсетей, кто-то говорит об их контроле. Но как вы будете контролировать мысли? Например, если раньше в ряде европейских стран, когда вы попадали на запись, сделанную городской камерой, то могли требовать, чтобы вас оттуда вырезали, то сейчас что вы будете вырезать? Спутник? Интерфейс? Facebook или Mindbook?

Очевидно, что технологии будут все сильнее влиять на геополитическую обстановку: если страна не «впишется» в новую технологическую волну, не обеспечит своим гражданам высокое качество жизни, она рискует потерять наиболее активный, пульсирующий идеями креативный слой.

Информационно-телекоммуникационные системы

Мы наблюдаем стремительное тотальное проникновение информационно-телекоммуникационных технологий (ИКТ). Кто бы мог лет 70 назад представить, что мы будем разговаривать с помощью маленьких коробочек? Сейчас почти все ходят с мобильными телефонами, кто-то - со смартфонами в виде браслета. Расстояние между устройством и телом человека составляет 2-3 сантиметра. И оно сокращается, в будущем девайсы просто уйдут под кожу. А еще немного, и у нас появятся интерфейсы мозг-компьютер.

Фото: Jordi Boixareu / Zumapress / Global Look

Сейчас сложно представить, как поменяют наше мышление виртуальная реальность и дополненная реальность. Наш социум распадется - мы будем слушать лекцию, сидя в очках виртуальной реальности на даче, при этом находясь в виртуальной комнате или школе. Уже сейчас благодаря сервисам, таким как Coursera, можно смотреть отличные курсы практически по всем областям знаний. Причем пока вы просто слушаете вебинары, но в будущем появятся технологии, позволяющие быть внутри этой виртуальной комнаты.

Например, объем рынка технологий дополненной реальности в хирургии составляет около 5 миллиардов долларов, и это только одно их применение. Уже существуют прототипы шлемов, которые позволяют получать актуальную и полную информацию о строящемся объекте: кто его создал, сколько он стоит и какие у него могут быть проблемы. Это совсем другой уровень анализа, управления и контроля.

Приходит время полностью цифровых фабрик. Например, у компании Amazon.com на складах нет ни одного человека, практически за все процессы отвечают роботы. У нас лишь несколько редких примеров попыток создать такие производства. Очевидно, что эффект их распространения будет равносилен технологиям телеграфа для мира голубиной почты. Мир переходит на платформенные решения, это совсем иная парадигма производства, а мы, например, все пытаемся наладить в стране консолидированную дискуссию по 3D-принтерам, а за рубежом они уже давно продаются в специализированных магазинах, или дискутировать про солнечные батареи, а уже появились разработки прозрачной солнечной батареи. Следующий шаг - заменить ими окна и перейти к полностью энергонезависимому дому. А если он еще подключен к smart grid - умной распределенной энергетической системе, то еще и начнет отдавать энергию в сеть, благодаря чему достигается положительный баланс. Сколько вы платите за электроэнергию? А теперь представьте, что эти деньги будут платить вам.

Энергетика

Скорее всего, энергетика будущего будет автономна, умна, экологична и адаптивна под потребности человека. У многих есть внешние аккумуляторы, заряжающие мобильные устройства, но сейчас уже разработана пленка, позволяющая заряжать телефон за несколько минут. В будущем его батарейка будет служить не 3-4 дня, а месяц или два, годы.

Следующий тренд в энергетике - это все независимое. В Америке уже несколько десятилетий разрабатывается технология автономного солдата, заряжающего снаряжение просто при ходьбе. А теперь представьте, что вы находитесь в своеобразном «энергококоне», вы подключены через специальный костюм или устройство к общей распределительной энергосети. Можно будет обмениваться энергией напрямую. Представленный недавно домашний накопитель Tesla - это только первый ход. Он очень дорогой и пока не особо эффективный, но прорывы в энергетике ожидаются колоссальные.

В классических форсайтах принято изучать не только те тренды, которые, скорее всего, наступят, но и такие события, вероятность наступления которых минимальна, но если они произойдут, то от такого «джокера» мало никому не покажется. Одним из таких, увы, неприятных «джокеров» была авария на «Фукусиме», ее мало кто ожидал, а эффект был колоссальным. Сейчас многие анализируют эффекты от развития доступных технологий извлечения метана из газогидратов, сланцев, добычи нефти нетрадиционных месторождений. Но это все события в зоне нашего управленческого предвидения, а что если у нас будут созданы эффективные, дешевые, «зеленые», при этом миниатюрные источники энергии, например ядерные мини-реакторы? Их влияние на сложившиеся цепочки создания добавленной стоимости будут колоссальными.

Транспорт

Транспортные технологии обеспечат эффект сжатия пространства. К сожалению, российская инфраструктура пока выступает сильным барьером для развития этого тренда в нашей стране. А ведь так хотелось бы провести выходные на Камчатке или Байкале. Пока мы обдумываем планы по дорожному строительству, китайские скоростные поезда всерьез нацелились на преодоление барьера в 1000 километров в час, используя технологии магнитной левитации.

Современные транспортные средства, безусловно, будут функционировать не только на земле, но и в воздухе, причем некоторые могут выйти за пределы атмосферы. Многими странами уже ведутся разработки по созданию «космического лифта». Развитие тросовых систем, включая разработку «космического лифта», позволит изменять орбиты космических аппаратов, перемещать грузы между орбитальными станциями, осуществлять запуски малых космических аппаратов и доставку полезных грузов на орбиту. Ключевой барьер здесь - это сам трос, который должен выдерживать даже не лифт, а собственный вес. Волокно толщиной с волос должно выдерживать тонну (сейчас - 500-600 килограммов). Чтобы сделать такой трос, нужны нанотехнологии. Они произведут настоящую революцию во многих отраслях.

Производство, наука и образование

Сейчас мы пытаемся внедрять аддитивные технологии - 3D-печать, а на смену им придет молекулярная самосборка - это еще более продвинутая технология. На молекулярном уровне можно будет собирать все что угодно. Используя нанофабрики, можно будет создавать вещи, продукты, для производства молока в будущем корова будет не нужна. Эти технологии - «убийцы» 3D-принтеров.

Ключевая проблема во всем умном (умных сетях, городах, домах, предприятиях и пр.) - это моделирование. И тут приходят на помощь наши математики. Здесь у нашей страны определенно есть шансы, чтобы добиться ведущей позиции на рынке. Однако мы наблюдаем интересную закономерность: как только исследователь наращивает уровень цитирования, зачастую меняется его аффилиация, принадлежность к тому или иному университету: если в его ранних работах указано, что человек из России, то в более поздних - бах! - уже какой-нибудь американский университет.

Таким путем шел и Китай. Китайцы выкупали профессоров по индексу цитирования вместе с их семьями, давали им зарплаты как в Америке. Они говорили им: «работайте, но права на созданную интеллектуальную собственность будут принадлежать КНР». Теперь есть китайские машины, китайские самолеты - все made in China.

Мы тратим на науку примерно 15 миллиардов долларов в год, а США - 450 миллиардов долларов. Если смотреть на распределение в мировой науке, то нас там совсем чуть-чуть. И такой момент. Есть метод, который называется «анализ исследовательских фронтов». Если другие ученые вдруг начинают активно цитировать исследователей, которые занимаются определенными областями, значит, именно в этих областях науки возможен прорыв. Но если за рубежом публикации, скажем, по медицине напрямую связаны с биохимией, химией, физикой, инжинирингом, то в публикациях российских ученых этих связей почти нет. У нас основная область науки - это астрономия.

Сейчас мы входим в шестой технологический уклад, для которого характерна конвергенция, иначе говоря, сращивание нано-, био-, инфо- и когнитивных технологий. Говоря «мы», я имею в виду мир. Россия - страна многоукладная, на некоторых наших заводах до сих пор работают доменные печи XIX века.

Кризис вымывает неэффективные производства и вынуждает компании быть конкурентоспособными. Пока они не будут работать в конкурентных условиях, в нашей экономике ничего не наладится. Исследования по репрезентативным выборкам, с замечательной экстраполяцией давали один вывод: у нас настолько нишевые рынки, что просто незачем конкурировать, а если незачем конкурировать, то зачем заниматься инновациями? Однако все подобные планы больших компаний, которые считают, что они изолированы, рушатся одним простым вопросом: «А вы китайцев спросили? А индусы что на этот счет думают?» Мы почему-то считаем, что существуем в некоем ограниченном пространстве - да ничего подобного, все поменяется очень быстро.

Чему стоит учить в условиях новой экономики? Сопромату или теории новых материалов? В авиастроении есть категория людей, которая называется «прочнисты»: они понимают, что происходит при сплавлении разных материалов, знают, как ведет себя крыло самолета в разных условиях. Но когда появляется черный самолет, изготовленный из композитных материалов, эти специалисты не представляют, что происходит с трещиной в крыле, сделанном из 25 спрессованных слоев материала, развалит ли она самолет.

В экономике будущего нужны новые компетенции. Важно понимать, какие ключевые потребности необходимо удовлетворять. В экономике есть такие понятия: b2b («бизнес - бизнесу») и b2c («бизнес - потребителю»). Как только вы устраняете посредников между конкретным потребителем, вы рушите цепочку создания добавленной стоимости. Зачем нужны аптеки, выписывающие лекарства, если их можно будет печатать дома? Зачем нужна таксомоторная компания, если можно напрямую связаться с таксистами? Зачем нужны супермаркеты, если доставка продукции будет идти напрямую в ваш холодильник? Под ваш профиль потребления будет адаптирована специальная, выстроенная вами, система продаж, и умный холодильник сам закажет все, что вам нужно. Что же делать рознице? Этот сегмент полностью вытесняется из цепочек создания добавленной стоимости. Потребитель станет царем нового мира.

Образовательный процесс будущего будет устроен иначе, чем сейчас. Я уже говорил, что любое образование можно получить в онлайн-режиме - а теперь представьте, что вы просто сможете загрузить учебную информацию в свой биочип. Но готова ли к этому наша психика? Здесь начинаются социальные, психологические и интеллектуальные проблемы.

Если раньше, в советские времена, была конкуренция технологий - у кого круче научно-технические заделы, лучше фундаментальные исследования, - то теперь к этому добавилась конкуренция на скоростях - как быстро вы умеете внедрять разработку. Насколько легко у нас технологическому предпринимательству? Есть немало разных хороших институтов развития, они ищут и поддерживают интересные проекты, но бизнес-ангелов, говорящих на одном языке и с наукой, и с бизнесом, практически нет. До сих пор отсутствует самый главный мостик от науки к бизнесу.

Новые рынки вытесняют традиционные сектора экономики моментально. Самая большая угроза и для человека, и для страны - это неготовность адаптироваться, вписаться в новое будущее.

Об этом открытии, которое представляет собой новый фундаментальный инструмент в области нанотехнологий, сообщается в августовском номере престижного журнала Science.
Дэррин Почан, доцент материаловедения и инжиниринга материалов Университета Делавэра, и Карен Вули, заслуженный профессор Джеймса С. Макдоннела в области гуманитарных и технических наук Университета Вашингтона в Сент-Луисе, возглавили работу исследовательского коллектива. Исследование проводилось за счет гранта Национального Научного фонда для Междисциплинарного коллектива по наноразмерным исследованиям (NIRT).

Дэррин Почан, доцент материаловедения и инжиниринга материалов Университета Делавэра.

Основным объектом исследований были блок-сополимеры, которые представляют собой синтетические молекулы, содержащие два или более химически различных сегмента, связанных в единое целое. Блок-сополимеры используются для производства целого ряда материалов, таких как пластики, резиновые подошвы для обуви, и, кроме того, в последнее время из них начали изготавливать переносные запоминающие устройства («флэш-накопители») для компьютеров.
«Блок-сополимер представляет собой длинноцепочечную молекулу, единица длины которой, или структурный элемент (блок), отличается в химическом плане от другого», - говорит Почан. - «В нашем случае, мы взяли один элемент, который любит воду, и другой, который ее не любит. Поэтому, когда их помещают в раствор, те блоки, которые не любят воду, стараются находиться как можно дальше от нее, и, таким образом, можно получить самые разнообразные формы, которые называются мицеллами».
Система, которую использовали ученые, состояла из три-блок-сополимера, составленного из полиакриловой кислоты, полиметилакрилата и полистирола, введенных в раствор тетрагидрофурана и воды, а также органических диаминов. Сама технология основана на способности двухвалентных органических противоположно заряженных ионов и растворяющих смесей заставлять блок-сополимеры организовываться по специальным схемам, создавая специфические змеевидные одномерные структуры.
Большая часть исследований проводилась с использованием микроскопов высокой мощности на Факультете Электронной Микроскопии Технического колледжа Университета Делавэра. Помощь исследовательскому коллективу оказывал техник Фрэнк Крисс.
Вули, которая является специалистом в области химии полимеров, и Почан, специалист по материаловедению, встречались на научно-исследовательских конференциях и обсуждали перспективы своих проектов. Она занималась проектированием мицелл сферической формы для использования при доставке лекарственных препаратов и в радиологии, однако, она заметила, что при различных условиях раствора у ее студентов получаются различные формы.

Изображения одномерных сборных структур, созданных исследовательским коллективом из Университетов Делавэра и Вашингтона в Сент-Луисе с помощью трансмиссионной просвечивающей электронной микроскопии.

Несмотря на то, что их лаборатории располагаются на расстоянии почти в 1500 км друг от друга, ученые утверждают, что их исследовательская работа была «прекрасным синергетическим сотрудничеством».
«В мире нанотехнологической самосборки необычайно заманчиво создать что-либо, что имеет не шарообразную форму», - отмечает Почан. - «Если ввести маленькие шарики с лекарственным препаратом в кровоток, органы человеческого организма и иммунная система избавятся от них в течение примерно суток. Если поместить молекулы в длинные и гибкие цилиндры, они могут оставаться в организме неделями», - замечает Почан.
По словам Почана, изменение формы мицелл позволяет доставлять лекарственный препарат в человеческом организме на протяжении длительного периода времени, потенциально обеспечивая отложенную доставку введенного одной инъекцией лекарственного препарата при химиотерапии.
«Заменив форму шара формой цилиндра, вы можете предположительно доставить два, или три, или четыре различных лекарственных препарата, введенных с помощью одной инъекции, в различные части организма: один в один участок, а другие в другие участки, и все с помощью одной самосборки», - говорит Почан.
Хотя исследования еще далеки от практических применений, открытия, сделанные коллективом, позволили получить новую фундаментальную технологию построения наноструктур «снизу вверх».

«Все это касается простого конструирования материалов и наноструктур», - говорит Почан. «Основной целью является проектирование молекул со всеми правилами и всей информацией, которая им нужна для того, чтобы образовать нужную вам форму и размер. Затем вы бросаете их в воду и смотрите, что из этого получится, надеясь, что это будет требуемая сложная наноструктура».
Забавно, но, когда Почан заканчивал аспирантуру много лет назад, он считал, что он покончил с блок-сополимерам.
«Я сейчас работаю на основе того, что сделано в годы аспирантуры в девяностых по каучукам и пластмассам», - рассказывает он. - «Тем не менее, если смотреть на блок-сополимеры как средства самосборки, то можно найти значительно больше потенциальных применений, чем у каучука, для багажника или пластмассовых напольных покрытий», - отмечает Почан.
«Мы можем использовать те же самые молекулы, но выстраивать их по-другому, так, чтобы получить что-нибудь полезное из области высоких технологий», - говорит он. «Примечательно, как возвращается мода на исследования, и новые применения находятся для «старых инструментов».

С тех пор, как слово «нанотехнологии» обрело всемирную популярность, огромное распространение получили истории о «нанороботах», захватывающих Вселенную. Фантасты состязаются в выдумывании самого жуткого сценария всемирной катастрофы, кинематографисты снимают многомиллиардные блокбастеры, а в блогосферу периодически просачиваются ужасные слухи о том, что «в Китае в результате секретного наногенного эксперимента родился трёхголовый щенок-мутант». Что правда, а что вымысел в футуристических «страшилках»? Чем в действительности занимаются учёные, создающие и исследующие наноструктуры? Как они это делают?

Кошмар Эрика Дрекслера 1

Идею «серой пыли» (в некоторых вариантах – «серой слизи») выдвинул один из идеологов современного нанотехнологического бума Эрик Дрекслер . Корни её содержатся во вполне позитивном стремлении людей к уменьшению размеров устройств и к улучшению свойств материалов, которыми они пользуются. И нанотехнологии обещают тут прорыв не меньшего масштаба, чем при появлении металлургии, пластмасс или композиционных материалов.

Важное обстоятельство: преимущества наноустройств и наноматериалов в масштабах мировой экономики станут заметны лишь тогда, когда наноструктурированные изделия достигнут макроразмеров. Для примера: если использовать при строительстве здания наноразмерные присадки, добавки, модификаторы и т.д., то можно улучшить характеристики конструкции на проценты, максимум – в разы. Если же всё здание целиком будет собрано из наноструктурированных строительных блоков, то оно может превосходить ныне существующие в десятки и сотни раз.

Но – чем меньше становится некая деталь или устройство, тем больше усилий нужно затратить на его изготовление, на контроль и обращение с ним. Т.е., чем меньше деталь, тем она дороже. Что же делать?

Оригинальное решение проблемы состоит в том, чтобы «научить» наноразмерные устройства собирать самих себя без участия человека. Каждый из нас видел, как образуются узоры на морозном стекле. Это пример самоорганизации на молекулярном уровне. Молекулы водяного пара из воздуха осаждаются на кристаллическую затравку, спонтанно возникшую на стекле. Осаждение происходит неравномерно, распределение поверхностной энергии по поверхности кристалла-затравки благоприятствует встраиванию новых молекул преимущественно в определённом месте и, как следствие, росту структуры строго в определённом направлении. В результате мы можем наблюдать глазом – т.е. на уровне макроструктуры – возникновение на стекле замысловатых двухмерных узоров.

Эрик Дрекслер предсказал, что магистральным путём развития нанотехнологий будет создание и совершенствование подходов молекулярной и атомарной самосборки. Логическим развитием этого направления должны стать микро- и на- ноконвейерные производства, в которых технологии самосборки будут использоваться наноразмерными машинами для воссоздания себя и подобных себе наноустройств. Именно такие (и только такие) фабрики, способные работать без участия человека в режиме нон-стоп 24 ч в сутки и 365 дней в году, смогут создавать десятки, сотни и тысячи тонн относительно недорогих, но, в то же время, наноструктурированных материалов, деталей и устройств. И только в этом случае станет возможной реализация всех тех фантастических возможностей, которые обещает умение контролировать структуру материалов и свойства деталей с атомарной точностью.

Именно здесь и кроется тот кошмар, который Дрекслер назвал «серой слизью». Что будет, если на одной из таких автономных нанофабрик сломается что-то в механизме контроля технологии, и наномашины перестанут делать полезные нанодетали, а вместо них начнут просто воссоздавать самих себя? Возникнет некое искусственное существо, столь крошечное, что его будет очень трудно заметить и уничтожить. Оно сможет легко распространяться, если сумеет попасть в окружающую среду, и единственное, что оно станет делать, – использовать весь материал планеты для производства наноструктурированной «пыли» или «слизи» (слизь страшнее, поэтому этот сценарий получил большее распространение). Постепенно вся живая и неживая природа будет «сожрана» и переработана в нанослизь.

Молекулярная самосборка, живая и неживая

Прежде всего нам нужно разделить искусственные технологии и живую природу. Потому что в живой природе именно процессы молекулярной самосборки лежат в основе самовоспроизводства макросистем. Способность белковых молекул специфически и избирательно связываться с другими молекулами – это фундаментальная особенность, лежащая в основе всех процессов, происходящих в живой клетке. В геноме человека закодированы десятки тысяч белковых структур. Этого достаточно, чтобы обеспечивать клетку строительными материалами, чтобы она могла извлекать энергию из высокоэнергетических соединений, обмениваться сложной системой сигналов с другими клетками в структуре организма и т.д.

Это значит, что примеры нанофабрик, способных существовать автономно и воспроизводить самих себя на основе молекулярной самосборки, – это все живые существа.

Мы знаем достаточно много, чтобы утверждать, что именно молекулярная самосборка лежит в основе роста и развития любого живого организма. Но мы знаем пока слишком мало, чтобы создать аналогичную систему из искусственных материалов и чтобы она работала.

Учёным сегодня известны тысячи реакций молекулярного взаимодействия по принципу самосборки. Многие из них промоделированы и детально изучены. Но в живой клетке происходят многие миллионы межмолекулярных реакций, и все они осуществляются направленно.

Сегодня невозможно себе представить, чтобы кто-то смог создать искусственный аналог живой клетки или хотя бы вируса – наиболее простой системы, способной к самовоспроизведению. Теоретически это возможно, но это перспектива многих десятилетий научных исследований.

А что можно сделать с помощью самосборки молекул сейчас?

Можно создавать единичные нанодетали и наноустройства. Они не будут способны воспроизводить себя, будут весьма дорогими в производстве, но их присутствие в макроустройстве может принципиально улучшить технические характеристики и потребительские свойства. Речь идёт о технологиях МЭМС и НЭМС (Микро- и НаноЭлектро- Механические Системы). Например, комплексы на платформе НаноФаб 100 позволяют в условиях высокого вакуума переносить пластины кристаллического кремния из одного технологического модуля в другой и последовательно создавать на кремнии самые разные наноразмерные структуры. При этом важную роль играют технологии на основе самосборки, например выращивание эпитаксиальных моноатомных слоев. Они позволяют формировать наноструктурированные заготовки – очень правильные, с точно заданными свойствами.

Однако для изготовления конечной детали или устройства принципиально важным оказывается комплексный подход: имея совершенную заготовку, нам необходимо иметь возможность прицельных нанолокальных воздействий на неё. И тут возникает вопрос: Как увидеть, чем измерить?

Итак, самосборка молекул – это один из способов создавать наноструктуры. Но для того чтобы созданные структуры можно было использовать в реальных изделиях, нужно иметь инструменты, которые позволяют видеть наноразмерные объекты, измерять их физико-химические свойства и вообще контролировать процесс их создания и встраивания в изделия МЭМС и НЭМС. Что это за инструменты?

Безусловно, самый информативный и перспективный метод анализа наноструктур на сегодня – сканирующая зондовая микроскопия (СЗМ). Суть этого подхода в том, что к поверхности образца подводят очень острую иглу – зонд, – которую затем перемещают от точки к точке (сканируют) и измеряют силу взаимодействия между иглой и поверхностью образца. Иглы-зонды могут быть самыми разными, соответственно, разной будет природа сил взаимодействия, а значит, можно исследовать различные характеристики нанообъекта.

Например, если зонд токопроводящий, с его помощью можно измерять электрические свойства в каждой точке поверхности (электропроводность, ёмкость, заряженность и др.). С помощью зонда с магнитным покрытием можно определить намагниченность образца и построить карту распределения и ориентации магнитных доменов в поверхностном слое магнитных материалов. Алмазным зондом можно измерить твёрдость материала с нанометровым разрешением. Всего существует более 40 методик сканирующей зондовой микроскопии. Единственным принципиальным ограничением СЗМ является то, что вся информация собирается исключительно с поверхности.

Вторым важным инструментом исследования наноструктур является электронная микроскопия (ЭМ). Мощные трансмиссионные электронные микроскопы сегодня дают субангстремное пространственное разрешение. Ограничение данного подхода кроется в том, что электроны взаимодействуют с веществом, а значит, не могут проникать глубоко. Наиболее выгодные образцы для трансмиссионной микроскопии – тонкие и твёрдые структуры, например фольги, двумерные кристаллы и т.п.

Растровая электронная микроскопия так же, как и СЗМ, позволяет получить визуальное изображение поверхности образца. Принципиальных отличия два.

Во-первых, получаемое изображение имеет только две координаты, которые можно количественно измерить (X и Y). Высоту наблюдаемых структур можно оценить косвенно, но измерить количественно невозможно (СЗМ даёт точное значение высоты в каждой точке). Во-вторых, электроны, в отличие от твёрдотельного зонда, всё же проникают внутрь материи. Поэтому в ЭМ есть возможность получить информацию о приповерхностном слое. Пучок электронов, которым сканируют объект, обладает очень высокой энергией; сталкиваясь с атомами вещества, электроны отражаются, рассеиваются, а также вызывают серьёзные изменения в электронной оболочке атомов. Анализ энергии электронов, а также рентгеновских квантов, которые вылетают из области взаимодействия пучка с веществом, позволяет получить информацию об элементном составе в приповерхностном слое объекта.

Весьма полезную информацию о внутренней структуре материи в масштабе нанометров может дать поток рентгеновского излучения. На относительно крупных неоднородностях в структуре объекта (нанометры и десятки нанометров) рентгеновские лучи могут отклоняться, и это явление лежит в основе малоуглового рентгеновского рассеяния (МУРР). МУРР позволяет исследовать размеры и распределение наночастиц в составе взвесей, в структуре полимерных нанокомпозитов. Этот же метод помогает обнаружить и изучить наноразмерные полости, например в твёрдых пенах, а также весьма полезен при исследовании тонких плёнок. Если же неоднородности сравнимы с длиной волны рентгеновского излучения (а это ангстремы – характерные размеры атомов и атомарных решёток в кристаллах), то анализируют широкоугловое рассеяние (ШУРР). Этот метод даёт информацию о дефектах в кристаллической решётке, позволяет реконструировать пространственную организацию биологических или синтетических макромолекул.

Самым хорошим источником рентгена для подобных исследований является синхротрон, однако современное развитие компактных систем для рентгеновской дифрактометрии предоставляет в руки учёных эффективные настольные инструменты для многих прикладных задач ШУРР и МУРР.

Инструменты российского лидерства

В последние годы стало модным ругать отечественную индустрию, судачить о том, как всё плохо в нашей науке. Однако есть примеры того, как отечественные научно-производственные компании создают оборудование для самых передовых исследований даже в масштабе всей мировой науки.

Так, в подмосковном Зеленограде вот уже 20 лет работает компания «Нанотехнология МДТ» . Здесь разрабатываются и серийно производятся исследовательские приборы для нанотехнологий, которые охотно приобретают ведущие научные центры по всему миру.

Ключом к успеху оказался комплексный подход к изучению наноструктур.

В конце прошлого года мы оборудовали уникальный наноцентр в Курчатовском институте, – рассказывает Виктор Быков , генеральный директор и основатель НТ-МДТ. – Основу центра составил комплекс на платформе НаноФаб 100, интегрированный с каналом вывода синхротронного излучения. НаноФаб 100 – это множество технологических модулей для формирования, обработки и анализа наноразмерных структур, собранные в единую автоматизированную систему».

Теперь у исследователей есть возможность вырастить некую структуру одним из методов молекулярной самосборки (например, в камере для роста эпитаксиальных структур), модифицировать её методами нанолокального воздействия (например, придать необходимую форму с помощью фокусированного ионного пучка, причём проделывать это можно при одновременном наблюдении с использованием колонны электронного микроскопа), а затем изучить её характеристики в модуле сканирующей зондовой микроскопии.

Вместе с источником синхротронного излучения получается полный набор того, что вообще может понадобиться учёному. Важно, что образец всё время находится в условиях высокого или сверхвысокого вакуума, а специальные технические решения обеспечивают точное его репозиционирование при транспортировке из модуля в модуль – каждый новый инструмент попадает точно в то же место на образце, с которым работали в предыдущем модуле.

Принцип интеграции различных методических подходов в единой системе отлично работает и при создании относительно компактных исследовательских приборов. Например, в Минске работает совместное белорусско-японское научное предприятие «Солар ТИИ».

Минск – это не Россия, но научная школа всё та же, советская. В своё время японцы заинтересовались нашими технологиями и наработками в области спектроскопии комбинационного рассеяния (КР). С их инвестициями были разработаны спектрометры КР, недорогие, с отличными характеристиками, весьма конкурентные на мировом рынке.

Сегодня сочетание минских спектрометров и зеленоградских сканирующих зондовых микроскопов позволило создать совершенно уникальную исследовательскую систему. Этот прибор использует эффекты нелинейной оптики и, благодаря этому, обходит принципиальные физические ограничения, например предел дифракции, лимитирующий пространственное разрешение оптических методов спектроскопии. Интеграция двух подходов – спектроскопии КР и сканирующей зондовой микроскопии – дала возможность получать информацию о химическом составе поверхностного слоя с разрешением до 50 нанометров!

Другой пример. В московском Институте физической оптики с помощью патентованной технологии (так называемая «линза Кумахова») научились фокусировать рентгеновские лучи в очень узкое пятно – до сих пор никто в мире делать этого не умел. Так стало возможным проводить рентгенофлуоресцентный анализ микроскопических областей на образце. А в результате интеграции компактной микрорентгенофлуоресцентной установки с СЗМ появился ещё один уникальный прибор. Он позволяет исследовать рельеф поверхности и одновременно даёт информацию об элементном составе выбранного микроучастка образца.

Можно констатировать, что отечественное оборудование для нанотехнологических исследований занимает прочные позиции в ряду самых передовых в мире.

***

Понятно, что толпы галактических нанороботов, уничтожающих всё на своём пути, или, если хотите, облака вредоносной «разумной» нанопыли, – это не более чем сюжеты для околонаучной фантастики. Однако самосборка наноразмерных структур существует, это важное и чрезвычайно перспективное направление развития нанотехнологий.

Пока что мы находимся на том уровне знаний и умений, когда каждый создаваемый нанообъект приходится тщательно исследовать, и при этом необходимо контролировать все внешние условия, чтобы полученный продукт можно было бы использовать в практических целях. Это только самое начало пути, и тем приятнее осознавать, что отечественная наука и отечественные технологии находятся в авангарде этого движения. Мы взяли хороший темп на старте и, будем надеяться, нам удастся сохранить лидерство и в дальнейшем.

1 Ким Эрик Дрекслер , род. в 1955 г., американский инженер. Работая в НАСА с 1975 г., уже тогда применял нанотехнологические подходы для повышения эффективности солнечных батарей. В 1986 г. основал «Форсайт Инститьют», главной целью которого является исследование перспектив расширения возможностей человека с помощью нанотехнологий и связанных с этим рисков. Покинув эту организацию в 2005 г., Дрекслер работает главным техническим консультантом в компании «Нанорекс», производящей программное обеспечение, используемое в проектировании наноструктур

Молекулярная самосборка

Molecular Self-Assembly

Молекулярная самосборка

Процесс объединения молекул с образованием ковалентных связей как часть определенной химической процедуры, контролируемой стереохимическими параметрами реакции и конформационными характеристиками интермедиатов. Интересен граничный случай между молекулярной (ковалентной) и супрамолекулярной самосборками при образовании фуллеренов в парах углерода при высоких температурах, в частности C 60 и C70, и родственных веществ, таких, например, как протяженные углеродные нанотрубки. Хотя, строго говоря, это пример необратимого образования ковалентных связей, однако в таких экстремальных условиях возможно обратимое образование даже сильных ковалентных связей, что в некоторой степени роднит их с более слабыми супрамолекулярными взаимодействиями, реализующимися в обычных условиях.

Ковалентная самосборка фуллеренов и углеродных нанотрубок в экстремальных условиях.


. В.В.Арсланов . 2009 .

Смотреть что такое "молекулярная самосборка" в других словарях:

    самосборка - Термин самосборка Термин на английском self assembly Синонимы Аббревиатуры Связанные термины биомиметические наноматериалы, водородная связь, капсид, нанослой, самособирающиеся монослои, супрамолекулярная химия, супрамолекулярный катализ, темплат …

    Molecular Self Assembly Молекулярная самосборка Процесс объединения молекул с образованием ковалентных связей как часть определенной химической процедуры, контролируемой стереохимическими параметрами реакции и конформационными… … Толковый англо-русский словарь по нанотехнологии. - М.

    Наноинженерия - (от нано и инженерия) научно практическая деятельность человека по конструированию, изготовлению и применению наноразмерных (наноструктурированных) объектов или структур, а также объектов или структур, созданных методами нанотехнологий. В… … Википедия

    Нанотехнология - (Nanotechnology) Содержание Содержание 1. Определения и терминология 2. : история возникновения и развития 3. Фундаментальные положения Сканирующая зондовая микроскопия Наноматериалы Наночастицы Самоорганизация наночастиц Проблема образования… … Энциклопедия инвестора

    СССР. Естественные науки - Математика Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… …

    Фибрин - (от лат. fibra – волокно) высокомолекулярный белок, образующийся из Фибриногена плазмы крови под действием фермента Тромбина; имеет форму гладких или поперечноисчерченных волокон, сгустки которых составляют основу тромба при свёртывании… … Большая советская энциклопедия

    Рибосомы - внутриклеточные частицы, осуществляющие биосинтез белка; Р. обнаружены в клетках всех без исключения живых организмов: бактерий, растений и животных; каждая клетка содержит тысячи или десятки тысяч Р. Форма Р. близка к… … Большая советская энциклопедия

    Баев, Александр Александрович - Александр Александрович Баев Дата рождения: 28 декабря 1903 (10 января 1904)(1904 01 10) Место рождения: Чита, Российская империя Дата смерти: 31 декабря 1994 … Википедия

    самособирающиеся монослои - Термин самособирающиеся монослои Термин на английском self assembled monolayers Синонимы Аббревиатуры SAM Связанные термины амфифильный, ван дер ваальсово взаимодействие, нанослой Определение монослои амфифильных молекул, образовавшиеся на… … Энциклопедический словарь нанотехнологий

    супрамолекулярная химия - Термин супрамолекулярная химия Термин на английском supramolecular chemistry Синонимы Аббревиатуры Связанные термины биомиметика, ван дер ваальсово взаимодействие, водородная связь, гидрофобное взаимодействие, донорно акцепторное взаимодействие,… … Энциклопедический словарь нанотехнологий

которые обещает умение контролировать структуру материалов и свойства деталей с атомарной точностью.

И мен но здесь и кроется тот koi имар, который Дрекслер назвал «серой слизью». Что будет, если на одной из таких автономных нанофабрик сломается что-то в механизме контроля технологии, и иа-номашины перестанут делать полезные нанолетали, а вместо них начнут просто воссоздавать самих себя? Возникнет некое искусственное существо, столь крошечное, что его будет очень трудно заметить и уничтожить. Оно сможет легко распространяться, если сумеет попасть в окружающую среду, и единственное, что оно станет делать, - использовать весь материал планеты для производства наноструктурированной «пыли» или «слизи» (слизь страшнее, поэтому этот сценарий получил большее распространение). Постепенно вея живая и неживая природа будет «сожрана» и переработана в напослизь.

Молекулярная самосборка, живая и неживая

Прежде всего нам нужно разделить искусственные технологии н живую природу. Потому что в живой природе именно пропессь! молекулярной самосборки лежат в основе самовоспроизводства макросистем. Способность белковых молекул специфически и избирательно связываться с другими молекулами - это фундаментальная особенность, лежащая в ос нове всех процессов, происходящих в живой клетке. В геноме человека закодированы десятки тысяч белковых структур. Этого достаточно, чтобы обеспечивать клетку строительными материалами, чтобы она могла извлекать энергию из высокоэнергетических соединений, обмениваться сложной системой сигналов с другими клетками в структуре организма и т.д.

Это значит, что примеры нанофабрик, способных существовать автономно и воспроизводить самих себя на основе молекулярной самосборки, - это все живые существа.

Мы знаем достаточно много, чтобы утверждать, что именно молекулярная самосборка лежит в основе роста и развития любого живого организма. Но мы знаем пока слишком мало, чтобы создать аналогичную систему из искусственных материалов и чтобы она работала

Примеры формирования поверхностных наноструктур путём самоорганизации:

а) Эти островки на кремниевой пластине имеют высоту 0,3-0,6 нм. Изображение и образец предоставлены Е.Е. Родякиной, С.С. Косолобовым, Д.В. Щегловым, А.В. Латышевым. Институт

физики полупроводников СО РАН, Россия;

б) Массив упорядоченных пирамидальных островков на германиево-кремниевой подложке. Изображение получено М.В. Шалевым, Институт физики микроструктур РАН, Нижний Новгород, Россия. Образец предоставлен А.В. Новиковым, Н.Ю. Шулешовым, М.В. Шалаевым, Институт

физики микроструктур РАН

Учёным сегодня известны тысячи реакций молекулярного взаимодействия по принципу самосборки. Многие из них промоделированы и детально изучены. Но в живой клетке происходят многие миллионы межмолекулярных реакций, и все они осуществляются направленно. Сегодня невозможно себе представить, чтобы кто-то с мог создать искусственный аналогживой клетки или хотя бы виру са -наиболее простой системы, способной к самовоспроизведению. Теоретически это возможно, НО Это перспектива многих десятилетий научных исследований.

А что можно сделать с помощью самосборки молекул сейчас?

Можно создавать единичные нанодста-ли и наноустройства. Они не будут способны воспроизводить себя, будут весьма дорогими в производстве, но их присутствие в макроустройстве может принципиально улучшить технические характеристики и потребительские свойства.

Речь идёт о технологиях МЭМС

Так выглядят элементы НЭМС, изготавливаемые уже сегодня

и НЭМС (Микро- и НаноЭлектро-Механические Системы), Например, комплексы на платформе НаноФаб 100 позволяют в условиях высокого вакуума переносить пластины кристаллического кремния из одного технологического модуля в другой и последовательно создавать на кремнии самые разные наноразмерные структуры. При этом важную роль играют технологии на основе самосборки, например выращивание эпитаксиальных моноатомных слоев. Они Позволяют формировать наноструктурироваппые заготовки -очень Правильные, с точно заданными свойствами.

Однако для изготовления конечной детали или устройства принципиально важным оказывается комплексный подход: имея совершенную заготовку, нам необходимо иметь возможность прицельных нанолокальных воздействий па неё. И тут возникает вопрос:

Как увидеть, нем измерить?

Итак, самосборка молекул - это один из способов создавать наноструктуры. 11о для того чтобы созданные структуры можно было использовать в реальных изделиях, нужно иметь инструменты, которые позволяют видеть наноразмерные объекты, измерять их физико-химические свойства и вообще контролировать процесс их создания it встраивания

Последние материалы раздела:

Христианская Онлайн Энциклопедия
Христианская Онлайн Энциклопедия

Скачать видео и вырезать мп3 - у нас это просто!Наш сайт - это отличный инструмент для развлечений и отдыха! Вы всегда можете просмотреть и скачать...

Принятие христианства на руси
Принятие христианства на руси

КРЕЩЕНИЕ РУСИ, введение христианства в греко православной форме как государственной религии (конец 10 в.) и его распространение (11 12 вв.) в...

Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение
Профилактика, средства и способы борьбы с болезнями и вредителями рябины обыкновенной (красной) Болезни рябины и их лечение

Иногда в самый разгар лета листья теряют зеленый цвет. Такое преждевременное окрашивание листьев, не отработавших положенный срок, – показатель...